12,616 research outputs found

    The metallicity dependence of WR winds

    Get PDF
    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.Comment: 5 pages, 4 figures, to be published in the Proceedings of the IAU Symposium No. 329 "The lives and death-throes of massive stars

    Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars

    Full text link
    Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&

    Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Get PDF
    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel JVAL (J), and the new trajectory submodel TRAJECT (T), to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM) moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry. <br><br> The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto chemistry. Under certain prerequisites described here, the results can be used to complement observations with detailed information about the history of observed air masses

    Heterogeneous domain decomposition of surface and porous media flow

    Get PDF
    We present a heterogeneous domain decomposition approach to the Richards equation coupled with surface water flow. Assuming piecewise constant soil parameters in the constitutive equations for saturation and relative permeability, we present a novel domain decomposition approch to the Richards equation involving on fast and robust subdomain solver based on optimization techniques. The coupling of ground and surface water is resolved by a Dirichlet - Neumann-type iteration

    Fast and robust numerical solution of the Richards equation in homogeneous soil

    Get PDF
    We derive and analyze a solver-friendly finite element discretization of a time discrete Richards equation based on Kirchhoff transformation. It can be interpreted as a classical finite element discretization in physical variables with nonstandard quadrature points. Our approach allows for nonlinear outflow or seepage boundary conditions of Signorini type. We show convergence of the saturation and, in the nondegenerate case, of the discrete physical pressure. The associated discrete algebraic problems can be formulated as discrete convex minimization problems and, therefore, can be solved efficiently by monotone multigrid methods. In numerical examples for two and three space dimensions we observe L2L^2-convergence rates of order O(h2)\mathcal{O}(h^2) and H1H^1-convergence rates of order O(h)\mathcal{O}(h) as well as robust convergence behavior of the multigrid method with respect to extreme choices of soil parameters

    On nonlinear Dirichlet-Neumann Algorithms for jumping nonlinearities. In: Domain Decomposition Methods in Science and Engineering XVI

    Get PDF
    We consider a quasilinear elliptic transmission problem where the nonlinearity changes discontinuously across two subdomains. By a reformulation of the problem via Kirchhoff transformation we first obtain linear problems on the subdomains together with nonlinear transmission conditions and then a nonlinear Steklov–Poincar´e interface equation. We introduce a Dirichlet–Neumann iteration for this problem and prove convergence to a unique solution in one space dimension. Finally we present numerical results in two space dimensions suggesting that the algorithm can be applied successfully in more general cases

    Heterogeneous substructuring methods for coupled surface and subsurface flow

    Get PDF
    The exchange of ground- and surface water plays a crucial role in a variety of practically relevant processes ranging from flood protection measures to preservation of ecosystem health in natural and human-impacted water resources systems
    • …
    corecore