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Abstract. We present a heterogeneous domain decomposition approach to the Richards equation coupled with surface water
flow. Assuming piecewise constant soil parameters in the constitutive equations for saturation and relative permeability, we
present a novel domain decomposition approch to the Richards equation involving on fast and robust subdomain solver based
on optimization techniques. The coupling of ground and surface water is resolved by a Dirichlet–Neumann-type iteration.
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A SOLVER-FRIENDLY DISCRETIZATION OF RICHARDS EQUATION IN
HOMOGENEOUS SOIL

The Richards equation [1, 2, 3]

nθ (p)t +divv(p) = 0, v(p) = −Kkr(θ (p))∇(p−z) (1)

is a well-accepted mathematical model of the saturated–unsaturated groundwater flow in homogeneous soil. Here,p is
the unknown capillary pressure onΩ× (0,T) for a timeT > 0 and a domainΩ ⊂ R

3 inhibited by the porous medium,
n is the porosity andK stands for the hydraulic conductivity. The coordinate in the direction of gravity is denoted byz.
The saturationθ , the relative permeabilitykr andp are related by state equations suggested, e.g., by van Genuchten [4]
or Brooks and Corey [5]. To fix the ideas, we consider on the Brooks–Corey functions given by

θ (p) =







θm+(θM −θm)
(

p
pb

)−λ
for p≤ pb

θM for p≥ pb

, kr(θ ) =

(

θ −θm

θM −θm

)3+ 2
λ

, θ ∈ [θm,θM] . (2)

where the minimal and maximal saturationθm, θM ∈ [0,1], λ , and the bubbling pressurepb are soil parameters. Note
that 1 degenerates to an elliptic problem forp≥ pb, becauseθ (p) = θM is constant in this case. This excludes explicit
time stepping. It is a long-standing problem in unsaturatedporous media flow simulations that “most discretization
approaches for Richards’ equation lead to nonlinear systems that are large and difficult to solve” [6] and that “poor
iterative solver performance . . . [is] often reported” [7].Apart from the degeneracy resulting fromkr(θ )→ 0 this is due
to the fact that the parameter functions degenerate to step functions for extreme soil parameters. On this background
we suggest a discretization of (1) that allows to use arguments from convex optimization instead of linearization in the
iterative finite element solution of the spatial problems.

The starting point is the reformulation

M(u)t −div
(

∇u−kr(M(u))ez

)

= 0 (3)
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of (1) in terms of a generalized pressureu obtained by Kirchhoff transformation

κ : p 7→ u :=
∫ p

0
kr(θ (q))dq

and a generalized saturationM(u) = θ (κ−1(u)). Here we setn = K = 1, for simplicity. This transformation leads to
a separation of ill-conditioning (now located in the inverse Kirchhoff transformationp = κ−1(u)) and the numerical
solution process of the remaining semilinear problem (3). Weak formulation and subsequent time-discretization by a
lumped implicit Euler scheme of the second order terms and explicit upwinding of the first order terms together with
a finite element discretization of the resulting spatial problems leads to discrete problems of the form

uh ∈ Sh :
∫

Ω
ISh(M(uh)v)dx+

∫

Ω
τ∇uh∇vdx= ℓ(v) ∀v∈ Sh (4)

to be solved in each time step. Here,τ > 0 is the time step size,Sh denotes the space of piecewise linear finite elements
with respect to a triangulationTh with mesh sizeh, nodal interpolationISh : C(Ω)→Sh, and the functionalℓ involves
the approximation from the previous time step and boundary data. We emphasize that (4) can be reformulated as a
strictly convex minimization problem of the form

uh ∈ Sh : J (uh)+ φh(uh) ≤ J (v)+ φh(v) ∀v∈ Sh

with quadratic energyJ (v) = 1
2 (τ∇v,∇v)− ℓ(v) and the convex, lower semicontinuous, proper functionalφh(v) =

∫

Ω ISh(Φ(v))dx generated by a nonlinear convex functionΦ satisfyingΦ′ = M. We emphasize that this formulation
even extends to step functionsθ (p) andkr(θ ) and therefore is robust with respect to the soil parameters.Moreover,
multigrid solvers are available that are robust with respect to the smoothness ofΦ and thus with respect to the soil
parameters and provide similar efficiency as in the linear self-adjoint case [8, 9].

As we are certainly interested in approximations of the physical pressurep we conclude the approximation process
by discrete inverse Kirchhoff transformation

ph := IShκ−1(uh) . (5)

We also introduce the approximationθh(ph) := IShM(uh) of the saturationθ .
Our solver-friendly discretization thus consists of the following three steps: 1) Kirchhoff transformation into

generalized pressureu. 2) Finite element discretization with algebraic (multigrid) solution providesuh. 3) Discrete
inverse Kirchhoff transformation ofuh into physical pressureph. We now explain how this discretization can be
obtained directly in terms ofph. To this end, we use the mean-value theorem on a reference triangle to findxT , yT on
the boundary of each triangleT such that the discrete chain rule

∇uh = krT(ph)∇ph , krT(ph) =

(

kr(θ (ph(xT))) 0
0 kr(θ (ph(yT)))

)

holds true. Hence,ph can be equivalently obtained from the standard finite element discretization

ph ∈ Sh :
∫

Ω
ISh(θh(ph)v) dx+ τ

∫

Ω
krh(ph)∇ph∇vdx= ℓ(v) ∀v∈ Sh

with numerical integrationkrh(ph)| = krT(ph) for all T ∈ Th.
We close this section with some convergence results, where we will make use of the non-degeneracy condition

kr(·) ≥ c > 0 . (6)

It can be achieved by suitable regularization of the corresponding Brooks–Corey function.

Theorem 1. Assume that the boundary data are sufficiently smooth and that the family of triangulationsTh with
h→ 0 is shape regular. Thenuh → u in H1(Ω) andθh → θ in L2(Ω) Moreover, if the non-degeneracy condition (6)
holds, thenM(uh) → M(u) in H1(Ω) andph → p in L2(Ω).

For a proof, we refer to Berninger et al. [9]. Numerical experiments also carried out in this paper even suggest
optimal order of convergence. Theoretical justification isthe subject of future research.



A MULTIDOMAIN DISCRETIZATION OF RICHARDS EQUATION IN
HETEROGENEOUS SOIL

In the case of space–dependent soil parameters Richards equation takes the form

nθ (x, p)t +divv(p) = 0, v(p) = −Kkr(x,θ (x, p))(∇p−z) . (7)

Assume that the soil parametersθm,i , θM,i ∈ [0,1], λi , and the bubbling pressurepb,i are constant on subdomainsΩi of
Ω (7) can be rewritten as

ni θi(pi)t −div
(

Ki kri(θi(pi))∇(pi −z)
)

= 0 on Ωi × (0,T) (8)

with pi = p|Ωi and interface conditions imposing the continuity ofp and of the fluxKikri(θi(pi)) across interior
boundaries. After Kirchhoff transformation in each of the subdomains, we obtain the following multidomain version
of (3)

ni Mi(ui)t −div
(

Ki(∇ui −kri(Mi(ui))ez)
)

= 0 on Ωi × (0,T) (9)

with nonlinear interface conditions

κ−1
i ui = κ−1

j u j (10)

Ki(∇ui −kri(Mi(ui))ez) ·ni j = K j(∇u j −kr j(M j (u j))ez) ·ni j . (11)

on the subdomain boundariesΓi j = Ωi ∩Ω j . Here,

κi : pi 7→ ui :=
∫ pi

0
kri(θi(q))dq

is the Kirchhoff transformation andui = κi(pi) denotes the generalized pressure in each subdomain. Discretization in
time and space along the line of the previous section leads todiscrete interface problems for approximationsui,h of
the generalized pressure. Note that these problems can be solved by nonlinear versions of well-known substructuring
techniques with the fast and robust multigrid methods mentioned in the preceding section as subdomain solvers.
We refer to Berninger [10] for further information. Discrete inverse Kirchhoff transformation provides the desired
approximations of the physical pressure.

COUPLING WITH SURFACE WATER

Let us first assume that the surface water is non-moving with horizontal water table, uniquely determined by the height
h = h(x,t) of water over the surfaceγ over the soil. The hydrostatic pressurepγ = hρg provides a Dirichlet boundary
condition for the Richards equation. For given geometryγ, the heighth determines the massm(t) of surface water in
the reservoir and vice versa. Denoting the outward normal toγ by n, mass conservation

d
dt

m(t) = ρ
∫

γ
v(x,t) ·ndσ(x) . (12)

relatesm(t) to the fluxv(x, t). Near the water table of the lake one can observe seepage faces where water can flow out
(and the water pressure vanishes), whereas further away, one usually has noflow conditions (with a nonpositive water
pressure). This complementarity condition is often calledSignorini-type or outflow condition [11, 12]. It reads

p ≤ 0, v ·n ≥ 0, p · (v ·n) = 0 on γ(t) . (13)

A priori, it is unknown where we have outflow and where noflow occurs. Apart from the Dirichlet boundary conditions
given by the hydrostatic pressure of surface water and the Signorini-type boundary conditions one usually has
Neumann boundary conditionsv ·n = fN(t) for some functionfN(t) on the rest of∂Ω.

After explicit time discretization of (12), the massmk+1 can be computed from the fluxvk. Then the new flux
vk+1 is obtained from the Richards eqution with Signorini boundary condition. All considerations of the preceding
sections apply to this case provided thatγ intersects the boundary of nor more than one subdomainΩi . Implicit time
discretization gives rise to a heterogeneous iteration of Dirichlet–Neumann-type.

Moving surface water can be described by the shallow water equations. As hydrostatic pressure is part of the
modelling assumptions, we can use the same interface condition with a similar heterogeneous domain decomposition
strategie.
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