815 research outputs found

    C^+ distribution around S1 in rho Ophiuchi

    Full text link
    We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on SOFIA of the emission/reflection nebula illuminated by the early B star S1 in the rho-OphA cloud core. This data set has been complemented with maps of CO(3-2), 13CO(3-2) and C18O(3-2), observed as a part of the JCMT Gould Belt Survey, with archival HCO^+(4-3) JCMT data, as well as with [O I] 63 and 145 micron imaging with Herschel/PACS. The [C II] emission is completely dominated by the strong PDR emission from the nebula surrounding S1 expanding into the dense Oph A molecular cloud west and south of S1. The [C II] emission is significantly blue shifted relative to the CO spectra and also relative to the systemic velocity, particularly in the northwestern part of the nebula. The [C II] lines are broader towards the center of the S1 nebula and narrower towards the PDR shell. The [C II] lines are strongly self-absorbed over an extended region in the S1 PDR. Based on the strength of the [13C II] F = 2-1 hyperfine component, [C II] is significantly optically thick over most of the nebula. CO and 13CO(3-2) spectra are strongly self-absorbed, while C18O(3-2) is single peaked and centered in the middle of the self-absorption. We have used a simple two-layer LTE model to characterize the background and foreground cloud contributing to the [C II] emission. From this analysis we estimate the extinction due to the foreground cloud to be ~9.9 mag, which is slightly less than the reddening estimated towards S1. Since some of the hot gas in the PDR is not traced by low J CO emission, this result appears quite plausible. Using a plane parallel PDR model with the observed [OI(145)]/[C II] brightness ratio and an estimated FUV intensity of 3100-5000 G0 suggests that the density of the [C II] emitting gas is ~3-4x10^3 cm^-3.Comment: Accepted for publication in Astronomy & Astrophysic

    An S-shaped outflow from IRAS 03256+3055 in NGC 1333

    Full text link
    The IRAS source 03256+3055 in the NGC 1333 star forming region is associated with extended sub-millimeter emission of complex morphology, showing multiple clumps. One of these is found to coincide with the driving source of a bipolar jet of S-shaped morphology seen in the emission lines of H_alpha and [SII] as well as in the H2 emission lines in the K-band. Detailed images of the driving source at the wavelengths of H_alpha and [SII] and in the I, J, H, and K bands as well as a K-band spectrum and polarimetry are discussed. The near-infrared morphology is characterized by a combination of line emission from the jet and scattered light from a source with a steep continuum spectrum. The morphology and proper motion of the jet are discussed in the context of a binary system with a precessing disk. We conclude that the molecular core associated with IRAS 03256+3055 consists of several clumps, only one of which shows evidence of recent star formation at optical and near-infrared wavelengths.We also briefly discuss a second, newly found near-infrared source associated with a compact sub-millimeter continuum source near IRAS 03256+3055, and conclude that this source may be physically unrelated the cluster of molecular clumps.Comment: 25 pages, including 5 figures. Accepted for publication in The Astronomical Journa

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    The structure of protostellar envelopes derived from submillimeter continuum images

    Get PDF
    High dynamic range imaging of submillimeter dust emission from the envelopes of eight young protostars in the Taurus and Perseus star-forming regions has been carried out using the SCUBA submillimeter camera on the James Clerk Maxwell Telescope. Good correspondence between the spectral classifications of the protostars and the spatial distributions of their dust emission is observed, in the sense that those with cooler spectral energy distributions also have a larger fraction of the submillimeter flux originating in an extended envelope compared with a disk. This results from the cool sources having more massive envelopes rather than warm sources having larger disks. Azimuthally-averaged radial profiles of the dust emission are used to derive the power-law index of the envelope density distributions, p (defined by rho proportional to r^-p), and most of the sources are found to have values of p consistent with those predicted by models of cloud collapse. However, the youngest protostars in our sample, L1527 and HH211-mm, deviate significantly from the theoretical predictions, exhibiting values of p somewhat lower than can be accounted for by existing models. For L1527 heating of the envelope by shocks where the outflow impinges on the surrounding medium may explain our result. For HH211-mm another explanation is needed, and one possibility is that a shallow density profile is being maintained in the outer envelope by magnetic fields and/or turbulence. If this is the case star formation must be determined by the rate at which the support is lost from the cloud, rather than the hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Subarcsecond Submillimeter Imaging of the Ultracompact HII Region G5.89-0.39

    Full text link
    We present the first subarcsecond submillimeter images of the enigmatic ultracompact HII region (UCHII) G5.89-0.39. Observed with the SMA, the 875 micron continuum emission exhibits a shell-like morphology similar to longer wavelengths. By using images with comparable angular resolution at five frequencies obtained from the VLA archive and CARMA, we have removed the free-free component from the 875 micron image. We find five sources of dust emission: two compact warm objects (SMA1 and SMA2) along the periphery of the shell, and three additional regions further out. There is no dust emission inside the shell, supporting the picture of a dust-free cavity surrounded by high density gas. At subarcsecond resolution, most of the molecular gas tracers encircle the UCHII region and appear to constrain its expansion. We also find G5.89-0.39 to be almost completely lacking in organic molecular line emission. The dust cores SMA1 and SMA2 exhibit compact spatial peaks in optically-thin gas tracers (e.g. 34SO2), while SMA1 also coincides with 11.9 micron emission. In CO(3-2), we find a high-velocity north/south bipolar outflow centered on SMA1, aligned with infrared H2 knots, and responsible for much of the maser activity. We conclude that SMA1 is an embedded intermediate mass protostar with an estimated luminosity of 3000 Lsun and a circumstellar mass of ~1 Msun. Finally, we have discovered an NH3 (3,3) maser 12 arcsec northwest of the UCHII region, coincident with a 44 GHz CH3OH maser, and possibly associated with the Br gamma outflow source identified by Puga et al. (2006).Comment: 41 pages, 11 figures, published in The Astrophysical Journal (2008) Volume 680, Issue 2, pp. 1271-1288. An error in the registration of the marker positions in Figure 11 has been corrected in this versio

    Large Area Mapping at 850 Microns. IV. Analysis of the Clump Distribution in the Orion B South Molecular Cloud

    Full text link
    We present results from a survey of a 1300 arcmin^2 region of the Orion B South molecular cloud, including NGC 2024, NGC 2023, and the Horsehead Nebula (B33), obtained using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Submillimeter continuum observations at 450 microns and 850 microns are discussed. Using an automated algorithm, 57 discrete emission features (``clumps'') are identified in the 850 micron map. The physical conditions within these clumps are investigated under the assumption that the objects are in quasi-hydrostatic equilibrium. The best fit dust temperature for the clumps is found to be T_d = 18 +/- 4 K, with the exception of those associated with the few known far infrared sources residing in NGC 2024. The latter internally heated sources are found to be much warmer. In the region surrounding NGC 2023, the clump dust temperatures agree with clump gas temperatures determined from molecular line excitation measurements of the CO molecule. The bounding pressure on the clumps lies in the range log(k^-1 P cm^3 K^-1) = 6.1 +/- 0.3. The cumulative mass distribution is steep at the high mass end, as is the stellar Initial Mass Function. The distribution flattens significantly at lower masses, with a turn-over around 3 -- 10 M_sun.Comment: 41 pages, 16 figures, accepted by Ap

    Massive Clumps in the NGC 6334 Star Forming Region

    Full text link
    We report observations of dust continuum emission at 1.2 mm toward the star forming region NGC 6334 made with the SEST SIMBA bolometer array. The observations cover an area of 2\sim 2 square degrees with approximately uniform noise. We detected 181 clumps spanning almost three orders of magnitude in mass (3\Msun6×103-6\times10^3 \Msun) and with sizes in the range 0.1--1.0 pc. We find that the clump mass function dN/dlogMdN/d\log M is well fit with a power law of the mass with exponent -0.6 (or equivalently dN/dMM1.6dN/dM \propto M^{-1.6}). The derived exponent is similar to those obtained from molecular line emission surveys and is significantly different from that of the stellar initial mass function. We investigated changes in the mass spectrum by changing the assumptions on the temperature distribution of the clumps and on the contribution of free-free emission to the 1.2 mm emission, and found little changes on the exponent. The Cumulative Mass Distribution Function is also analyzed giving consistent results in a mass range excluding the high-mass end where a power-law fit is no longer valid. The masses and sizes of the clumps observed in NGC 6334 indicate that they are not direct progenitors of stars and that the process of fragmentation determines the distribution of masses later on or occurs at smaller spatial scales. The spatial distribution of the clumps in NGC 6334 reveals clustering which is strikingly similar to that exhibited by young stars in other star forming regions. A power law fit to the surface density of companions gives Σθ0.62\Sigma\propto \theta^{-0.62}.Comment: 16 pages, 11 figures, 4 tables. To appear in the Astrophysical Journa

    Giant Molecular Outflows Powered by Protostars in L1448

    Get PDF
    We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448 dark cloud. These maps were acquired using the On-The-Fly capability of the NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales for the first time. Careful comparison of the spatial and velocity distribution of our high-velocity CO maps with previously published optical and near-infrared images and spectra has led to the identification of six distinct CO outflows. We show the direct link between the heretofore unknown, giant, highly-collimated, protostellar molecular outflows and their previously discovered, distant optical manifestations. The outflows traced by our CO mapping generally reach the projected cloud boundaries. Integrated intensity maps over narrow velocity intervals indicate there is significant overlap of blue- and red-shifted gas, suggesting the outflows are highly inclined with respect to the line-of-sight, although the individual outflow position angles are significantly different. The velocity channel maps also show that the outflows dominate the CO line cores as well as the high-velocity wings. The magnitude of the combined flow momenta, as well as the combined kinetic energy of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which the protostars are currently forming, although some question remains as to the exact processes involved in redirecting the directionality of the outflow momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa
    corecore