43 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Psychotropic drug-induced genetic-epigenetic modulation of CRTC1 gene is associated with early weight gain in a prospective study of psychiatric patients

    Get PDF
    BACKGROUND: Metabolic side effects induced by psychotropic drugs represent a major health issue in psychiatry. CREB-regulated transcription coactivator 1 (CRTC1) gene plays a major role in the regulation of energy homeostasis and epigenetic mechanisms may explain its association with obesity features previously described in psychiatric patients. This prospective study included 78 patients receiving psychotropic drugs that induce metabolic disturbances, with weight and other metabolic parameters monitored regularly. Methylation levels in 76 CRTC1 probes were assessed before and after 1 month of psychotropic treatment in blood samples. RESULTS: Significant methylation changes were observed in three CRTC1 CpG sites (i.e., cg07015183, cg12034943, and cg 17006757) in patients with early and important weight gain (i.e., equal or higher than 5% after 1 month; FDR p value = 0.02). Multivariable models showed that methylation decrease in cg12034943 was more important in patients with early weight gain (≥ 5%) than in those who did not gain weight (p = 0.01). Further analyses combining genetic and methylation data showed that cg12034943 was significantly associated with early weight gain in patients carrying the G allele of rs4808844A>G (p = 0.03), a SNP associated with this methylation site (p = 0.03). CONCLUSIONS: These findings give new insights on psychotropic-induced weight gain and underline the need of future larger prospective epigenetic studies to better understand the complex pathways involved in psychotropic-induced metabolic side effects

    PM20D1 is a quantitative trait locus associated with Alzheimer’s disease

    No full text
    The chances to develop Alzheimer’s disease (AD) result from a combination of genetic and non-genetic risk factors1, the latter likely being mediated by epigenetic mechanisms2. In the past, genome-wide association studies (GWAS) have identified an important number of risk loci associated with AD pathology3, but a causal relationship remains difficult to establish. In contrast, locus-specific or epigenome-wide association studies (EWAS) have revealed site-specific epigenetic alterations, which provide mechanistic insights for a particular risk gene but often lack the statistical power of GWAS4. Here, combining both approaches, we report a previously unidentified association of the peptidase M20-domain-containing protein 1 (PM20D1) with AD. We find that PM20D1 is a methylation and expression quantitative trait locus coupled to an AD-risk associated haplotype, which displays enhancer-like characteristics and contacts the PM20D1 promoter via a haplotype-dependent, CCCTC-binding-factor-mediated chromatin loop. Furthermore, PM20D1 is increased following AD-related neurotoxic insults at symptomatic stages in the APP/PS1 mouse model of AD and in human patients with AD who are carriers of the non-risk haplotype. In line, genetically increasing or decreasing the expression of PM20D1 reduces and aggravates AD-related pathologies, respectively. These findings suggest that in a particular genetic background, PM20D1 contributes to neuroprotection against AD

    Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Get PDF
    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies.This work was supported by the Human Frontiers Science Program (HFSP) Ref. RGP0018/2007-C, the European Community’s RGP0018/2007-C (FP7/2007-2013) under grant agreement PITN-GA-2009-238242—DISCHROM project and grant agreement 278486-DEVELAGE, the Instituto de Salud Carlos III—Ministerio de Sanidad y Consumo Proyecto FIS (Fondo Investigación Sanitaria, Spain) through the E-RARE EuroRETT network, Grants P50-AG16573, HD065160-01 and SAF2007-6-8, the Fondation Lejeune, Botin Foundation, Fundació Agrupació Premi Àmbit Gent Grant and the Cellex Foundation (Catalonia)

    A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex

    Get PDF
    Epigenome-wide association studies of Alzheimer's disease have highlighted neuropathology-associated DNA methylation differences, although existing studies have been limited in sample size and utilized different brain regions. Here, we combine data from six DNA methylomic studies of Alzheimer's disease (N?=?1453 unique individuals) to identify differential methylation associated with Braak stage in different brain regions and across cortex. We identify 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs in the entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-cortex meta-analysis (N?=?1408 donors) identifies 220 CpGs associated with neuropathology, annotated to 121 genes, of which 84 genes have not been previously reported at this significance threshold. We have replicated our findings using two further DNA methylomic datasets consisting of a further >600 unique donors. The meta-analysis summary statistics are available in our online data resource ( www.epigenomicslab.com/ad-meta-analysis/ ).This article is freely available online. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published version, accepted versio
    corecore