8,274 research outputs found

    Numerical analysis of interlaminar stresses in open-hole laminates under compression

    Get PDF
    In this paper, the interlaminar stresses in open-hole laminates subjected to compressive loads are analysed using a numerical model. This model implements the Serial/Parallel Mixing Theory (S/PMT) and a Continuum Damage Mechanics (CDM) approach. The S/PMT estimates the global stiffness in the laminate from fibre and matrix properties. The CDM approach models the damage initiation due to fibre microbuckling. The global response estimated by the model was verified with experimental data from the literature. The model predicts that the damage initiates in the laminate middle-plane where the thickest block of plies oriented in the load direction is located, and progressively propagates to the nearest block of layers with the same orientation. Two laminate stacking sequences were analysed. The interlaminar stresses around the hole presented symmetry with respect to the load direction and the perpendicular axis, being located the maximum and minimum values in different angular positions for each stress component and laminate.Postprint (published version

    Localization from quantum interference in one-dimensional disordered potentials

    Full text link
    We show that the tails of the asymptotic density distribution of a quantum wave packet that localizes in the the presence of random or quasiperiodic disorder can be described by the diagonal term of the projection over the eingenstates of the disordered potential. This is equivalent of assuming a phase randomization of the off-diagonal/interference terms. We demonstrate these results through numerical calculations of the dynamics of ultracold atoms in the one-dimensional speckle and quasiperiodic potentials used in the recent experiments that lead to the observation of Anderson localization for matter waves [Billy et al., Nature 453, 891 (2008); Roati et al., Nature 453, 895 (2008)]. For the quasiperiodic case, we also discuss the implications of using continuos or discrete models.Comment: 5 pages, 3 figures; minor changes, references update

    MOTION OF A LARGE OBJECT IN A 2D BUBBLING FLUIDIZED BED

    Get PDF
    The motion of a large object in a bubbling fluidized bed is experimentally studied using digital image analysis. A wide range of fluidized bed applications involves the motion of large objects within the bed, such objects being reactants, catalysts, agglomerates, etc. The experiments were run in a 2D bubbling fluidized bed with glass spheres as bed material. The object motion is measured using tracking techniques, while independent measurements of the dense phase velocity (using PIV) and bubble velocity were carried out. The effect of the excess gas velocity on the object motion was also analyzed. It is generally accepted that objects with densities in a range around the bed density will describe sinking-rising cycles throughout the whole bed, where the sinking motion is similar to that of the dense phase, and the rising motion is composed of a number of sudden jerks or jumps, as a result of the raising effect of passing bubbles. This work characterized the circulation patterns of an object with a density similar to that of the bed material, but much larger in size. A comparison between the object rising motion and the local bubble motion provided evidence for the study of the bubble ability to raise the object, depending on the bubble velocity and size. A comparison between the object sinking motion and the dense phase motion served to analyze the minor effect of buoyancy forces over the object sinking motion. Finally, the combined effects of the maximum attained depth and the number of jerks in the circulation time is studied, with some insight in the multiple-jerks phenomenon

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases

    Soil and leaf mineral element contents in mediterranean vineyards: bioaccumulation and potential soil pollution

    Full text link
    The study reported here concerns the geochemical distributions of macro- and trace elements (including potentially toxic elements, PTEs) in the vineyard soils of Alcubillas, which is one of the oldest, albeit not world-renowned, wine-growing areas in La Mancha (Central Spain). Soil and leaf samples were analyzed by X-ray fluorescence spectrometry to ascertain the levels of various elements in the soil and the plant. The potential toxicity of the elements was assessed with regard to the development of the vineyard. Despite the fact that fertilizers and pesticides are employed in the vineyards in this area, the results showed that the levels of trace elements in the soil samples did not exceed the reference values according the pedogeochemical values for the region and Spain. This finding suggests that the study area is not polluted, and therefore, there are hardly any traces of anthropogenic contamination. The Biological Absorption Coefficient (BAC) was calculated to assess the assimilation of various elements from the soil to the leaves, and differences were found in the element absorption capacity of the vines. Some elements were not taken up by Vitis vinifera despite elements like Zr and Rb being present in relatively high concentrations in the soil. The production in these soils does not represent a threat to human health or the ecosystem, because the farmers in this area are extremely careful to preserve the environment and they only farm to achieve moderate yields of grapes per hectar

    An expeditious low-cost method for the acoustic characterization of seabeds in a Mediterranean coastal protected area

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGPosidonia oceanica meadows are ecosystem engineers which, despite their ecological relevance, are experiencing habitat fragmentation and area decrease. Cartography and information on the ecological status of these habitats is key to an effective maritime spatial planning and management for habitat conservation. In this work we apply an acoustic methodology to map benthic habitats (substrate and vegetation) in an archipelago of the Natura 2000 Network close to the coast of Murcia (SE Spain) where dense and sparse areas of P. oceanica, and patches of Cymodocea nodosa appear over a sandy and had bottom. The methodology uses dual frequency information (200 kHz and 38 kHz) acquired with a single-beam echosounder to develop a bathymetry, and performs sea bottom and vegetation supervised classifications, using video and scuba diver observations as groundtruthing data. Sea bottom was classified from acoustic features of the first and second 200 kHz echoes into 5 substrate classes using a random forest classifier: sand, fine sand, coarse sand, hard bottoms and hard bottoms with sandy patches. The vegetation was classified from features extracted from the "above-bottom" part of the echo (height and backscattering intensity) in both frequencies, resulting also in a 5 class classification: C. nodosa meadows, dense P. oceanica meadows, dispersed P. oceanica meadows, dense P. oceanica with sand patches, and no-vegetation; according to the random-forest Gini index, 38 kHz features were the most informational variables for this classification. The validation accuracies of both classifications were 85% (substrates) and 70% (vegetation), close to accuracies reported in the literature when using a similar number of classes. The results of this article (including bathymetric, and substrate and vegetation thematic maps), together with the acoustic methodology described and used, are contributions that can improve the continuous monitoring of Mediterranean seagrasses

    El sistema del interferón tipo I protege a juveniles de lenguado senegalés (Solea senegalensis) frente a la infección por VHSV

    Get PDF
    El lenguado senegalés (Solea senegalensis) es susceptible a la infección por el Virus de la Septicemia Hemorrágica Viral (VHSV) bajo condiciones experimentales. El objetivo de este trabajo es determinar el papel del sistema del interferón tipo I de lenguado frente a las infecciones por VHSV. Para llevar a cabo este objetivo se realizó un ensayo en el que el sistema del IFN I de juveniles de lenguado se estimuló con poli I:C. Trascurridas 24 h estos mismos animales se inocularon con una dosis letal de un aislado de VHSV patógeno para lenguado. Los controles utilizados fueron: (I) animales inoculados con VHSV sin previa estimulación con poli I:C, (II) animales inoculados sólo con medio L15 y (III) animales inoculados únicamente con poli I:C.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Post-glacial evolution of alpine environments in the western Mediterranean region : The Laguna Seca record

    Get PDF
    In an effort to understand how alpine environments from the western Mediterranean region responded to climate variations since the last glacial-interglacial transition, a detailed chronological control and sedimentological analysis, supported by magnetic susceptibility, total organic carbon and C/N data, were carried out on the sedimentary record of Laguna Seca (LS). This is a latitudinal and altitudinally (2259 masl) key alpine wetland site located in the easternmost area of the Sierra Nevada, southern Iberian Peninsula, where sediments accumulated during Heinrich Stadial 1, Bolling-Allerod (B-A) and the Younger Dryas (YD) previously unrecorded in alpine Sierra Nevada. Climate controlled sedimentation in LS and three coarse-grained and one fine-grained facies association are differentiated, which help us decipher the paleoenvironmental evolution of LS: (1) subaerial cohesionless debris flows during a paraglacial stage; (2) till or nival diamicton during a small glacier/nivation hollow stage; (3) massive mudstone by suspension settling of clays into standing water during a lacustrine stage; and (4) frost-shattering breccia deposited inside the lacustrine stage, probably during the YD, and linked to a periglacial substage. The development of a previously existing small glacial cirque during the Last Glacial Maximum (LGM) in the LS basin at an elevation between 2500 and 2300 m could be supported by the important availability of slope sediments glacially-conditioned such as debris flows, reworked by paraglacial slope processes during the first deglaciation stages, confirming previous studies of landforms in the catchment area and the LGM-Equilibrium Line Altitude estimation above 2400 masl in Sierra Nevada. Mean sediment accumulation rates in the LS sedimentary units (4.21 and 0.28 mm/yr during the paraglacial small glacier/nivation stage and the lacustrine stage, respectively) confirm that geomorphic activity accelerated just after glaciers retreated due to a slope adjustment and high availability of glacially conditioned sediments. An abrupt change in paleoenvironmental and paleoclimatic conditions occurred in LS at ~ 15.7 cal kyr BP. This change was probably due to an increase in temperature and precipitation in the western Mediterranean region during the B-A. At LS, this resulted in significant ice-melt, forming a deep-water lake in LS with important organic matter contribution until the end of the Early Holocene (except in the YD when the lake level probably dropped), but elsewhere a general glacier recession in the Sierra Nevada and an expansion of the Mediterranean forest in the southern Iberian Peninsula. Finally, the general long-term aridification that occurred during the Middle Holocene until the present in the western Mediterranean region triggered an important environmental change transforming LS into an ephemeral wetland with an increase in aquatic productivity.Peer reviewe

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&
    corecore