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Abstract 

In this paper, the interlaminar stresses in open-hole laminates subjected to compressive 

loads are analysed using a numerical model. This model implements the Serial/Parallel 

Mixing Theory (S/PMT) and a Continuum Damage Mechanics (CDM) approach. The 

S/PMT estimates the global stiffness in the laminate from fibre and matrix properties. 

The CDM approach models the damage initiation due to fibre microbuckling. The 

global response estimated by the model was verified with experimental data from the 

literature. The model predicts that the damage initiates in the laminate middle-plane 

where the thickest block of plies oriented in the load direction is located, and 

progressively propagates to the nearest block of layers with the same orientation. Two 

laminate stacking sequences were analysed. The interlaminar stresses around the hole 

presented symmetry with respect to the load direction and the perpendicular axis, being 
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located the maximum and minimum values in different angular positions for each stress 

component and laminate. 
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1. Introduction 

Structural components usually have notches and holes that produce a phenomenon of 

in-plane stress concentration that could reduce their strength significantly. In addition, 

interlaminar stresses appear in these components close to the free-edges, even when in-

plane loads are applied. These stresses can be relevant and contribute to the laminate 

failure due to the low interlaminar strength of composite laminates [1]. Interlaminar 

stresses control two damage modes, shear failure and delamination. The shear 

interlaminar stresses can produce matrix crack at the free-edge, and the normal stress in 

the thickness direction contribute to generate damage by delamination [2, 3]. The 

analysis of the interlaminar stresses at the free-edge in laminates has been studied since 

the 70s of the last century [4]. Since then many works have focused on this topic, 

mainly on the free-edge of a laminate because the modelization of a straight edge is 

simpler [5-8]. The stress field around the hole is clearly three-dimensional and with 

large gradients in all the components [9, 10]. Some works use analytical models [11, 12] 

or numerical models [1, 8] to estimate the three-dimensional stress field in intact 

laminates. When damage appears, the stresses change and purely elastic models can not 

be considered valid.  

The analysis of open-hole laminates under compressive loads is important since the 

compressive strength in the direction of the fibres is significantly lower than the tensile 
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strength, in the order of 60% for many composites, and thus the damage initiate at lower 

stress [10]. In addition, the failure mechanisms under compressive and tensile loads are 

different. There are several mechanisms that can contribute the laminate failure [13]. 

For example, under tensile loads, the fibre failure is controlled by fibre breakage, while 

in compression, the mechanism that produce the fibre failure is the microbuckling [10, 

14, 15]. The damage of laminate begins by fibre microbuckling in sublaminate scaled 

laminates with plies at 0º [16, 17] and can propagate by other failures modes such as 

matrix cracking and delamination [18, 19]. The damage of laminates with ply at 0º 

(sublaminate level scaling) begins by fibre microbuckling [16, 17] and can propagate by 

other failures modes such as matrix cracking and delamination [18, 19]. 

Many works can be found in the scientific literature on modelling of in-plane stresses 

and damage evolution around a hole in a laminate subjected to tensile [20-23] and 

compressive loads [9, 10, 16, 24]. In spite of these works, there is a necessity to 

continuous working in the knowledge of the problem of open-hole laminates subjected 

to compressive loads. 

Several methodologies can be applied to study laminates containing holes subjected to 

different load states. The simplest models only can predict the final failure [25-27]. 

More complex models can predict damage initiation and growth [23, 28-35] 

In a previous work, the authors analysed the edge effect in laminates without damage 

subjected to tensile loads [8] due the symmetries of the stress field of this problem some 

simplification reduced the complexity of the model. To analyse laminates with holes 

and with damage more complex models are needed. 

The serial-parallel mixing theory (S/PMT) [36] is an alternative to other methodologies 

such as mesomechanical or micromechanical models. Some of these models require the 
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estimation of a large number of parameters that are difficult to measure experimentally. 

Mesomechanical models consider the material as a homogeneous continuous medium 

and have limitations for predicting fibre and matrix failure separately. Micromechanical 

models are based on a detailed definition of the heterogeneity of the composite material 

and are extremely complex and difficult to apply to structural problems [36]. As 

described by his authors, S/PMT combines speed and accuracy and is based on 

combining relatively simple constitutive equations for the constituents, fibre and matrix, 

and at the same time is able to reproduce the anisotropy and heterogeneity of a laminate. 

This theory has been applied successfully to predict the fatigue behaviour [37] and the 

evolution of delamination [38] in laminates. S/PMT has not been used to analyse the 

interlaminar stresses and damage initiation in problems with stress concentration. 

In this work, a phenomenological model was used by combining S/PMT with a CDM to 

predict the interlaminar stresses near the free-edges and the hole-edge at the damage 

onset. The method proposed analysed the microbuckling effect of the fibres oriented 

according to the load direction, developed in two laminates with different stacking 

sequences. This failure mode initiation was predicted thanks to the possibility of 

defining different threshold limits for tensile and compressive loads. This avoids the 

need for the micromechanical formulation developed in [39] regarding fibre 

microbuckling or any other solution that includes the explicit complexity of the physics 

involved. The mentioned complexity is one of the main difficulties in compression 

problems as revealed in [16]. The model was calibrated using experimental data from 

unidirectional unnotched laminates and it was validated using the experimental results 

of multidirectional unnotched and notched laminates subjected to a compression load 

[40].  
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2. Model description and validation 

In this work, a Continuum Damage Mechanics (CDM) model was used to simulate the 

damage initiation process due to fibre microbuckling in laminates subjected to 

compressive loads. The Serial/Parallel Mixing theory (S/PMT) [36] was applied to 

characterize the mechanical behaviour of a multidirectional laminate by combining the 

fibre and matrix mechanical properties. The CDM model and S/PMT were implemented 

in an iterative finite element algorithm developed for non-linear problems in this work.  

A general scheme of the algorithm is summarized in Fig.1. 

 

 

Figure 1. General scheme of the method 

The algorithm is composed of two loops. An outer loop (with iteration index i) defines 

the equilibrium between internal and external forces in the Finite Element Method 

[𝑴𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔]𝒇,𝒎;  [𝑫𝒂𝒎𝒂𝒈𝒆 𝑴𝒐𝒅𝒆𝒍]𝒇,𝒎; [𝒌𝒇,𝒌𝒎,𝒑,𝜽]𝒑𝒍𝒚𝒚; [𝒃𝒄]

[𝒅𝜺𝒄]𝒊𝒕+𝜟𝒕, 𝒅𝜺𝒎 𝒕, 𝒅𝜺𝒇
𝒕

∆𝝈𝒔 𝒒

𝒅𝜺𝒇 𝒒, 𝒅𝜺𝒎 𝒒
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(FEM), and an inner loop (with iteration index q) that balances the iso-stress 

components according to the relations imposed by S/PMT. 

The outer loop inputs are the fibre and matrix mechanical properties and damage 

parameters, all ply definition constants (volumetric fractions, directions with parallel 

behaviour and fibre direction) and boundary conditions. Once convergence is reached, 

the outer loop produces as outputs, the nodal forces 𝑓𝑓 and displacements 𝑢𝑢, and the 

strain and stress components of composite, fibre and matrix �𝜀𝜀𝑐𝑐, 𝜀𝜀𝑓𝑓 , 𝜀𝜀𝑚𝑚,𝜎𝜎𝑐𝑐,𝜎𝜎𝑓𝑓 ,𝜎𝜎𝑚𝑚�. 

For each Gauss point and element in the model, the inner loop uses a Newton-Raphson 

iterative scheme to obtain the strain and stress tensors of the composite that verify the 

iso-strain and iso-stress conditions required by the S/PMT. These block inputs are 

composite strains in the next time step [𝑑𝑑𝜀𝜀𝑐𝑐]𝑖𝑖𝑡𝑡+𝛥𝛥𝛥𝛥 and fibre �𝑑𝑑𝜀𝜀𝑓𝑓�
𝑡𝑡
 and matrix strains 

[𝑑𝑑𝜀𝜀𝑚𝑚]𝑡𝑡 in the step t. Moreover, the outputs of this block are the composite 𝜎𝜎𝑐𝑐, fibre 𝜎𝜎𝑓𝑓 

and matrix stresses 𝜎𝜎𝑚𝑚 needed for the internal forces calculation in the outer loop. 

S/PMT also produces the composite constitutive tensor 𝐶𝐶𝑇𝑇 needed for the global 

stiffness matrix 𝐾𝐾𝑇𝑇 calculation in the following outer loop iteration.  

From the fibre �𝑑𝑑𝜀𝜀𝑓𝑓�𝑞𝑞 and matrix [𝑑𝑑𝜀𝜀𝑚𝑚]𝑞𝑞 strains, the explicit damage model calculates 

the fibre [𝐶𝐶𝑓𝑓]𝑞𝑞 and matrix [𝐶𝐶𝑚𝑚]𝑞𝑞 constitutive tensors and the stresses in each q iteration 

of the inner loop. S/PMT provides the composite constitutive tensor by combining fibre, 

and matrix constitutive tensors and reduces, through successive iterations, the difference 

between fibre and matrix serial stresses. 

 

2.1. Serial/Parallel Mixing Theory 

This theory is based on the following hypothesis: 



7 
 

• The composite material is made of two different components, fibre and matrix. 

The material is modelled as homogeneous with a perfect bond between the 

components, where the component participations are proportional to their 

volumetric fractions. 

• The components exhibit a parallel behaviour in the fibre direction (iso-strain) 

and a serial behaviour (iso-stress) in the perpendicular direction. 

In this work, a separation between parallel and serial components was implemented by 

rearranging the components of the strain and stress vectors written according to Voigt 

notation. The reordering can be expressed by using a projection matrix P. The 𝜀𝜀 and 𝜎𝜎 

vectors are transformed into 𝜀𝜀′ and 𝜎𝜎′ where the parallel components are placed in the 

first rows and then, the remaining serial components. In such a way: 

𝜀𝜀′ = 𝑃𝑃𝑃𝑃 = �
𝜀𝜀𝑝𝑝
𝜀𝜀𝑠𝑠� ;              𝜎𝜎′ = 𝑃𝑃𝑃𝑃 = �

𝜎𝜎𝑝𝑝
𝜎𝜎𝑠𝑠�                               (1) 

Each ‘ij’ element in the 𝑃𝑃𝑖𝑖𝑖𝑖 (6x6) matrix is 1 if the ‘𝑗𝑗𝑡𝑡ℎ’ component in 𝜀𝜀 or 𝜎𝜎 

corresponds to the ‘𝑖𝑖𝑡𝑡ℎ’ component of 𝜀𝜀′ or 𝜎𝜎′  and is 0 in any other case. 𝑃𝑃 can be split 

into two matrices 𝑃𝑃𝑝𝑝 and 𝑃𝑃𝑠𝑠. The first 𝑛𝑛 rows in 𝑃𝑃𝑝𝑝 correspond to the first 𝑛𝑛 rows in 𝑃𝑃 

while the remaining rows contain null elements, with 𝑛𝑛 the number of components with 

parallel behaviour. Complementarily, the last (6-𝑛𝑛) rows in 𝑃𝑃𝑠𝑠 correspond to the last (6-

𝑛𝑛) rows in 𝑃𝑃 while the other 𝑛𝑛 rows contain null elements. This can be expressed as: 

𝑃𝑃 =  𝑃𝑃𝑝𝑝 + 𝑃𝑃𝑠𝑠                             (2) 

In the model proposed, only the fibre direction (in each ply local axis) acts according to 

a parallel behaviour so that 𝑛𝑛 = 1 and the parallel components are 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑥𝑥𝑥𝑥. The 

theory enables any constitutive law for the fibre and matrix to be considered separately. 

In this work, given that fibre microbuckling determines laminate failure, the fibre was 

modelled according to a continuum isotropic damage model whereas the matrix was 
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modelled as an elastic material. Under these conditions, fibre and matrix constitutive 

laws are: 

𝜎𝜎𝑓𝑓 = �1 − 𝑑𝑑𝑓𝑓�𝐶𝐶𝑓𝑓𝜀𝜀𝑓𝑓;      𝜎𝜎𝑚𝑚 = 𝐶𝐶𝑚𝑚𝜀𝜀𝑚𝑚                             (3) 

where 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑚𝑚 are the constitutive tensors of fibre and matrix and 𝑑𝑑𝑓𝑓 is the scalar 

damage fibre variable. The serial/parallel decomposition described above can be applied 

in (3) by using the P matrix defined in (1) and (2): 

𝜎𝜎𝑖𝑖′ = �
𝜎𝜎𝑝𝑝
𝜎𝜎𝑠𝑠�𝑖𝑖

= (1 − 𝑑𝑑𝑖𝑖)𝐶𝐶𝑖𝑖′𝜀𝜀𝑖𝑖′ = (1 − 𝑑𝑑𝑖𝑖) �
𝐶𝐶𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝
𝐶𝐶𝑠𝑠𝑠𝑠 𝐶𝐶𝑠𝑠𝑠𝑠

�
𝑖𝑖
�
𝜀𝜀𝑝𝑝
𝜀𝜀𝑠𝑠�𝑖𝑖

 ;      𝑖𝑖 = 𝑓𝑓,𝑚𝑚       (4) 

where: 

𝐶𝐶𝑖𝑖′ = �𝑃𝑃𝑝𝑝𝐶𝐶𝑖𝑖𝑃𝑃𝑝𝑝𝑇𝑇 + 𝑃𝑃𝑝𝑝𝐶𝐶𝑖𝑖𝑃𝑃𝑠𝑠𝑇𝑇 + 𝑃𝑃𝑠𝑠𝐶𝐶𝑖𝑖𝑃𝑃𝑝𝑝𝑇𝑇 + 𝑃𝑃𝑠𝑠𝐶𝐶𝑖𝑖𝑃𝑃𝑠𝑠𝑇𝑇�

= �
𝐶𝐶𝑝𝑝𝑝𝑝(𝑛𝑛 𝑥𝑥 𝑛𝑛) 𝐶𝐶𝑝𝑝𝑝𝑝�𝑛𝑛 𝑥𝑥 (6 − 𝑛𝑛)�

𝐶𝐶𝑠𝑠𝑠𝑠�(6− 𝑛𝑛)𝑥𝑥 𝑛𝑛� 𝐶𝐶𝑠𝑠𝑠𝑠�(6 − 𝑛𝑛)𝑥𝑥(6 − 𝑛𝑛)�
�
𝑖𝑖

;  𝑖𝑖 = 𝑓𝑓,𝑚𝑚               (5) 

In (5), the submatrix dimensions are included in brackets. Given that the matrix behaves 

elastically, 𝑑𝑑𝑚𝑚 = 0, while 𝑑𝑑𝑓𝑓 is given by the continuum damage model described later. 

The relations between composite strains and stresses and fibre and matrix strains and 

stresses are given by the usual rule of mixtures applied according to a parallel and serial 

decomposition as described in (1): 

�𝜎𝜎𝑝𝑝�𝑐𝑐 = 𝑘𝑘𝑓𝑓�𝜎𝜎𝑝𝑝�𝑓𝑓 + 𝑘𝑘𝑚𝑚�𝜎𝜎𝑝𝑝�𝑚𝑚          (parallel behaviour)

(𝜀𝜀𝑠𝑠)𝑐𝑐 = 𝑘𝑘𝑓𝑓(𝜀𝜀𝑠𝑠)𝑓𝑓 + 𝑘𝑘𝑚𝑚(𝜀𝜀𝑠𝑠)𝑚𝑚               (serial behaviour)
;               (6) 

where c, f and m respectively represent composite, fibre and matrix and 𝑘𝑘𝑓𝑓 and 𝑘𝑘𝑚𝑚 are 

the volumetric fractions. The closure equations imposed by the theory can be expressed 

easily using the serial/parallel separation described in (1): 

�𝜀𝜀𝑝𝑝�𝑓𝑓 = �𝜀𝜀𝑝𝑝�𝑚𝑚 = �𝜀𝜀𝑝𝑝�𝑐𝑐             (parallel behaviour)

(𝜎𝜎𝑠𝑠)𝑓𝑓 = (𝜎𝜎𝑠𝑠)𝑚𝑚 = (𝜎𝜎𝑠𝑠)𝑐𝑐             (serial behaviour)
;                  (7) 
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The S/PMT algorithm calculates the composite, fibre and matrix stresses in the instant 

𝑡𝑡 + 𝛥𝛥𝛥𝛥 from the composite strains at the instant 𝑡𝑡 + 𝛥𝛥𝛥𝛥 (obtained in the iteration i of the 

outer loop) and fibre and matrix strains at the instant t. The first step is the separation of 

strains and stresses in the serial and parallel components as described in (1). According 

to the first equation in (7), composite, fibre and matrix parallel strains are equal, 

however, serial strains are unknown and their calculation needs an initial approximation 

for either the matrix or the fibre. Rastellini [41] proposed as an initial approximation for 

the increment of matrix serial strain: 

[(𝛥𝛥𝛥𝛥𝑠𝑠)𝑚𝑚]𝑜𝑜 = �𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�
−1
�(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓(𝛥𝛥𝛥𝛥𝑠𝑠)𝑐𝑐

+ 𝑘𝑘𝑓𝑓 ��𝐶𝐶𝑠𝑠𝑠𝑠�𝑓𝑓 − �𝐶𝐶𝑠𝑠𝑠𝑠�𝑚𝑚� �𝛥𝛥𝜀𝜀𝑝𝑝�𝑐𝑐�            (8) 

where [(𝛥𝛥𝛥𝛥𝑠𝑠)𝑚𝑚]𝑜𝑜 = [𝜀𝜀𝑠𝑠𝑚𝑚]𝑜𝑜𝑡𝑡+𝛥𝛥𝛥𝛥 − [𝜀𝜀𝑠𝑠𝑚𝑚]𝑡𝑡. Constitutive tensors showed in (8) are the fibre 

and matrix tangent constitutive tensors in the instant t, decomposed as described in (5). 

Once [𝜀𝜀𝑠𝑠𝑚𝑚]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 is determined, [𝜀𝜀𝑠𝑠𝑓𝑓]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 (in the iteration q of the inner loop) can be 

cleared from the second equation of (6): 

[𝜀𝜀𝑠𝑠𝑓𝑓]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 =
1
𝑘𝑘𝑓𝑓

 [𝜀𝜀𝑠𝑠𝑐𝑐]𝑡𝑡+𝛥𝛥𝛥𝛥 −
𝑘𝑘𝑚𝑚

𝑘𝑘𝑓𝑓
[𝜀𝜀𝑠𝑠𝑚𝑚]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥          (9) 

When parallel and serial components of fibre and matrix strains are determined, these 

have to be rearranged (according to the original order of 𝜀𝜀 and 𝜎𝜎) to apply the 

constitutive law of each component given in (3). After this, the fibre and matrix stresses 

are calculated and the serial components should verify: 

[𝛥𝛥𝜎𝜎𝑠𝑠]𝑞𝑞 = [𝜎𝜎𝑠𝑠𝑚𝑚]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 − [𝜎𝜎𝑠𝑠𝑓𝑓]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 ≤ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡             (10) 

If [𝛥𝛥𝜎𝜎𝑠𝑠]𝑞𝑞 is less than the tolerance defined in (10), the strain-stress state is correct and 

the stress state of the composite can be calculated through the application of the inverse 

second equation of (1). Otherwise, the stress state has to be corrected with the Newton-



10 
 

Raphson method proposed by Rastellini et al. [36], where the initial approach is 

minimized using the Jacobian of the residual stresses. This Jacobian (in the iteration q 

of the inner loop) can be written as follows: 

𝐽𝐽𝑞𝑞 = �
𝜕𝜕(𝛥𝛥𝜎𝜎𝑠𝑠)
𝜕𝜕𝜀𝜀𝑠𝑠𝑚𝑚

�
[𝜀𝜀𝑠𝑠𝑚𝑚]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥

= [(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚]𝑞𝑞 +
𝑘𝑘𝑚𝑚

𝑘𝑘𝑓𝑓
�(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓�𝑞𝑞             (11) 

This Jacobian is inserted in a Newton-Raphson scheme that provides the next iteration 

value for the matrix serial strain. 

[𝜀𝜀𝑠𝑠𝑚𝑚]𝑞𝑞+1𝑡𝑡+𝛥𝛥𝛥𝛥 = [𝜀𝜀𝑠𝑠𝑚𝑚]𝑞𝑞𝑡𝑡+𝛥𝛥𝛥𝛥 − 𝐽𝐽𝑞𝑞−1[𝛥𝛥𝜎𝜎𝑠𝑠]𝑞𝑞                          (12) 

In order to have quadratic convergence, the Jacobian described in (11) has to be 

calculated using the constitutive tangent tensors of the components. For the calculation 

of these tensors, the numerical derivation technique described in [38] is used. 

The composite constitutive tensor needs to be estimated when the inner loop converges. 

This tensor is required to calculate the global stiffness matrix in the iteration i in the 

outer loop. To obtain the composite constitutive tensor from the fibre and matrix 

constitutive tensors in their parallel and serial components the following relations were 

used [31]: 

�𝐶𝐶𝑝𝑝𝑝𝑝�𝑐𝑐 = �𝑘𝑘𝑓𝑓�𝐶𝐶𝑝𝑝𝑝𝑝�𝑓𝑓 + 𝑘𝑘𝑚𝑚�𝐶𝐶𝑝𝑝𝑝𝑝�𝑚𝑚� + 𝑘𝑘𝑓𝑓𝑘𝑘𝑚𝑚 ��𝐶𝐶𝑝𝑝𝑝𝑝�𝑓𝑓 − �𝐶𝐶𝑝𝑝𝑝𝑝�𝑚𝑚� �𝑘𝑘
𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�

−1 ��𝐶𝐶𝑠𝑠𝑠𝑠�𝑚𝑚 − �𝐶𝐶𝑠𝑠𝑠𝑠�𝑓𝑓�

�𝐶𝐶𝑝𝑝𝑝𝑝�𝑐𝑐 = �𝑘𝑘𝑓𝑓�𝐶𝐶𝑝𝑝𝑝𝑝�𝑓𝑓�𝑘𝑘
𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�

−1(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚 + 𝑘𝑘𝑚𝑚�𝐶𝐶𝑝𝑝𝑝𝑝�𝑚𝑚�𝑘𝑘
𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�

−1(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓�

�𝐶𝐶𝑠𝑠𝑠𝑠�𝑐𝑐 = �𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓�𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�
−1�𝐶𝐶𝑠𝑠𝑠𝑠�𝑚𝑚 + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�

−1�𝐶𝐶𝑠𝑠𝑠𝑠�𝑓𝑓�

(𝐶𝐶𝑠𝑠𝑠𝑠)𝑐𝑐 =
1
2
�(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓�𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�

−1(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚 + (𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�𝑘𝑘𝑚𝑚(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓  + 𝑘𝑘𝑓𝑓(𝐶𝐶𝑠𝑠𝑠𝑠)𝑚𝑚�
−1(𝐶𝐶𝑠𝑠𝑠𝑠)𝑓𝑓�

(13) 

 

2.2. Damage Model 

The material degradation process can be described using the Continuum Damage 

Mechanics model formulated by Kachanov [42]. In this work, microbuckling was 

modelled by a reduction of the stiffness and strength properties through a scalar damage 
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variable that establishes the degradation level in each Gauss point. To simulate the 

constitutive law of the fibre, the isotropic damage model defined by Oller [43] was 

applied. This model defines different thresholds for tensile and compression stresses. 

The degraded stress 𝜎𝜎 is obtained isotropically from the effective stress 𝜎𝜎𝑜𝑜 through: 

𝜎𝜎 = (1 − 𝑑𝑑)𝜎𝜎𝑜𝑜 = (1 − 𝑑𝑑)𝐶𝐶𝑜𝑜𝜀𝜀              (14) 

where 𝑑𝑑 is the scalar damage variable that is 0 when the material is intact and is 1 if the 

material is completely damaged. The effective stress 𝜎𝜎𝑜𝑜 is calculated using the 

constitutive elastic law 𝐶𝐶𝑜𝑜 and the corresponding strain level 𝜀𝜀. The degradation 

initiation and evolution process is described through a yielding function. Typically, this 

function adopts the form: 

𝐹𝐹(𝜎𝜎𝑜𝑜,𝑑𝑑) = 𝑓𝑓(𝜎𝜎𝑜𝑜)− 𝑐𝑐(𝑑𝑑)              (15) 

where 𝑐𝑐(𝑑𝑑) defines the damage threshold and 𝑓𝑓(𝜎𝜎𝑜𝑜) characterizes the yield surface. 

Damage starts to grow when 𝑓𝑓(𝜎𝜎𝑜𝑜) reaches 𝑐𝑐(𝑑𝑑) and, hence, 𝐹𝐹(𝜎𝜎𝑜𝑜,𝑑𝑑) goes to zero. 

𝐹𝐹(𝜎𝜎𝑜𝑜,𝑑𝑑) keeps its null value as long as damage evolves. Before any damage level is 

reached, the value of 𝑐𝑐(𝑑𝑑) is associated with 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 known as first damage threshold and 

is updated according to: 

𝑐𝑐(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝜎𝜎𝑜𝑜)}𝑠𝑠} ;            0 ≤ 𝑠𝑠 ≤ 𝑡𝑡        (16) 

Particularly, instead of (15) the damage criteria is transformed into an equivalent form 

by using a monotonous increasing, semi-positive, invertible and scalar G function: 

𝐹𝐹�(𝜎𝜎𝑜𝑜 ,𝑑𝑑) = 𝐺𝐺[𝑓𝑓(𝜎𝜎𝑜𝑜)]− 𝐺𝐺[𝑐𝑐(𝑑𝑑)]              (17) 

In this work, the Simo-Ju generalized criteria [44] is used as yield function 𝑓𝑓(𝜎𝜎𝑜𝑜). This 

function can be written: 

𝑓𝑓(𝜎𝜎𝑜𝑜) = 𝜑𝜑(𝑟𝑟)�𝜀𝜀𝐶𝐶𝑜𝑜𝜀𝜀           (18) 
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In (18), 𝜑𝜑(𝑟𝑟) is a weight function that describes the relations between the compression 

and tensile loads: 

𝜑𝜑(𝑟𝑟) = 𝑟𝑟𝑟𝑟 + (1 − 𝑟𝑟)         (19) 

with 𝑁𝑁 = 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 , the relation between the maximum compression and tensile loads and 𝑟𝑟 

is taken from [45] and defines the relations between the compression and tensile 

eigenvalues of the stress tensor: 

𝑟𝑟 =
∑ 〈𝜎𝜎𝑖𝑖〉3
𝑖𝑖=1

∑ |𝜎𝜎𝑖𝑖|3
𝑖𝑖=1

       (20) 

where 〈𝑥𝑥〉 is the McAully function defined as 〈𝑥𝑥〉 = 1
2

[𝑥𝑥 + |𝑥𝑥|]. The weight function 

𝜑𝜑(𝑟𝑟) transforms the tensile loads into equivalent compressive loads being weighted by 

the tensile strength. With this approach, the damage threshold 𝑐𝑐(𝑑𝑑) and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 defined in 

(15) and (16) must be defined using the compression stress, while the difference 

between the compression and the tensile threshold is defined by the parameter N, which 

is a property of the material. 

The evolution of the damage scalar variable d in softening behaviour can be deduced 

from the Kuhn-Tucker conditions. From the consistency condition 𝐹𝐹�̇(𝜎𝜎𝑜𝑜,𝑑𝑑) = 0, it can 

be demonstrated that [39]: 

𝑑𝑑 = 𝐺𝐺[𝑓𝑓(𝜎𝜎𝑜𝑜)]                 (21) 

The function that is proposed for 𝐺𝐺[𝑓𝑓(𝜎𝜎𝑜𝑜)] takes the form: 

𝑑𝑑 = 𝐺𝐺�𝑓𝑓(𝜎𝜎𝑜𝑜)� = 1 −
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓(𝜎𝜎𝑜𝑜) 𝑒𝑒
𝐴𝐴�1−𝑓𝑓(𝜎𝜎𝑜𝑜)

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚�        (22) 

Equation (22), formulated by Oliver et al. [45], proposes an exponential softening for 

the damage variable d. The parameter 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 corresponds to the maximum compressive 

load in a compressive pure state. The parameter A shown in (22) is obtained from the 
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dissipation material equation by considering a uniaxial monotonous increasing load 

process. The expression of the parameter A in these conditions according to Oller [46], 

is: 

𝐴𝐴 =
1

𝑔𝑔𝑓𝑓
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚2 𝑁𝑁2 − 1

2

          (23) 

where 𝑔𝑔𝑓𝑓 is the maximum energy (per unit volume) dissipated by the material under 

compressive loads. The connection between the described damage model and the 

Fracture Mechanics model is established by matching the dissipated energy and the 

required energy to open new surfaces: 

𝑔𝑔𝑓𝑓𝑉𝑉 = 𝑔𝑔𝑓𝑓𝐴𝐴𝑐𝑐𝑙𝑙 = 𝐾𝐾𝐴𝐴𝑐𝑐 → 𝑔𝑔𝑓𝑓 =
𝐾𝐾
𝑙𝑙

           (24) 

where 𝐾𝐾 is the energy (per unit area) release rate, 𝐴𝐴𝑐𝑐 is the crack area and l is the 

damage length which is perpendicular to the affected area. In a continuum material this 

length l tends to zero, however, if this formulation is applied to a finite element code, l 

takes a finite value. In the model proposed, l corresponds to the characteristic dimension 

of each finite element, which can be estimated by the cubic root of the element volume. 

 

2.3. Model calibration and validation 

The developed model was applied to estimate the response of a laminate plate with and 

without hole subjected to compressive loads. Specimens of 245 x 50 x 3 mm3 and 5 mm 

diameter centred hole were modelled.  

The plate was meshed by isoparametric, hexaedrical elements with eight nodes per 

element. The shape functions were linear and the quadrature rule for the integration of 

the local stiffness matrices was defined on eight Gauss points. The laminate plate was 

clamped at one end and was subjected to a uniform compression load at the other end. 
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The model was validated by experimental data of a carbon fibre laminate T800/924C 

with two stacking sequences, unidirectional and [±45/02]3S [40]. The mechanical 

properties were taken from the scientific literature [18, 40].  

To analyse the sensitivity of the results to the mesh size, four different meshes with 

9600, 19968, 28800 and 44928 elements (Fig. 2) were used. 

a) 

b) 

c) 

d) 

Figure 2. Meshes used in the analysis. a) 9600 elements, b) 19968 elements, c) 28800 

elements, d) 44928 elements. 

The global response of the laminate was not affected by the number of elements in the 

mesh (Fig. 3). However, near the hole, the stress field was different for each mesh. In 

order to estimate appropriately the stress concentration phenomenon with a moderate 

computational cost, a mesh with 28800 elements was selected (Fig. 4). 
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Figure 3. Applied load- displacement curve in laminate [ ±45/02]3S with a 5 mm 

diameter hole 

 

Figure 4. Stress vs. distance from hole free edge in transversal direction for different 

meshes in laminate [±45/02]3S with a 5 mm diameter hole 

The calibration was carried out using the experimental data corresponding to a 

unidirectional laminate subjected to uniaxial compression load [40]. In the S/PMT, the 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Displacement (mm)

0

10

20

30

40

50

60

70
To

ta
l F

or
ce

 (k
N

)
9600 mesh points

19968 mesh points

28800 mesh points

44928 mesh points

0 5 10 15 20 25

Distance from hole free edge (mm)

100

150

200

250

300

350

400

450

St
re

ss
 (M

Pa
)

9600 mesh points

19968 mesh points

28800 mesh points

44928 mesh points



16 
 

fibre and matrix properties are considered belonging to a different anisotropy space that 

can eventually become isotropic [47]. In this way, the mesoscopic behaviour of the ply 

is as observed in the experimental test so that equivalent properties for the constituents 

that allow reproduction of the experimental strain-stress curve are fixed, (Fig 5). This 

process provides equivalent properties for the constituents that allow the behaviour of 

an unnotched and notched laminate with a [±45,02]3𝑠𝑠 stacking sequence to be 

reproduced. An excellent correlation in stiffness and damage initiation prediction, 

between numerical and experimental results, was found (Fig.6).  

 

Figure 5. Compressive stress–strain curve of the T800/924C unidirectional laminate. 

Experimental and numerical curve after calibration. 
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Figure 6. Comparison of experimental and numerical compressive stress–strain curves 

a) unnotched [±45/02]3s laminate, b) laminate [±45/02]3s with a 5 mm diameter hole. 

 

Therefore, the proposed model can predict the damage due to fibre microbuckling in 

open-hole laminates subjected to compressive loads. It enables modelling the 

orthotropic behaviour of multidirectional laminates without the use of second or fourth 

order damage tensors as proposed by other authors [34, 35], which would increase the 

number of internal variables and the computational cost. 

 

3. Results 

In this section, a laminate plate with a centred hole of 5 mm in diameter subjected to a 

uniaxial compression load was studied using the proposed model. Two different 

laminates, [45/-45/02]3𝑠𝑠 and [902/02]3s of the material used in the previous section, were 

modelled. The interlaminar stresses that appear at the hole-edge and free-edges were 

analysed. In both laminates, the same strain level was applied. 

The results show that the model predicts the damage localization in both laminates. The 

damage initiates in the middle plane of the laminate where the thickest block of plies 

oriented in the load direction is located. Later, the damage progressively propagates to 

the nearest block of layers with the same orientation, to the top and bottom of the 

laminate (Fig. 7). This damage can be caused by fibre microbuckling that appears in 

laminates subjected to compressive loads. The damage is higher in the [902/02]3𝑠𝑠 

laminate than in the [45/-45/02]3𝑠𝑠 laminate, due to the fact that the plies at 0° support 

more applied load than the plies at 90°. 
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Figure 7. Localization of fibre damage initiation in 0º plies. Left: Laminate [45/−45/02]3𝑠𝑠  

Right: Laminate [902/02]3𝑠𝑠 

 

The distributions of the interlaminar stresses around the hole are shown in Fig. 8 and 

Fig. 9 in the three plies of different orientation furthest to the plane of the symmetry of 

the laminate. The compression load is applied from the right end of the laminate plate 

while the fixed boundary condition is on the left end. In all the plies, the stresses in the 

quadrature points are represented. For this reason, the stresses in the upper ply are 

different from zero. Figs. 8 and 9 show that a change in the stacking sequence modifies 

the interlaminar stresses. In the [45/−45/02]3𝑠𝑠 laminate (Fig. 8), the stress σzz presents an 

axial symmetry around the Z-axis. In the [902/02]3s laminate, a symmetry with respect to 

the X and Y -axes also appears (Fig. 9). 
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 σzz σxz σyz 

45 

 

-45 

0 

Figure 8. Stresses σ𝒛𝒛z, σx𝒛𝒛 y σ𝒚𝒚𝒚𝒚 (from left to right) for the plies with 45°, -45º and 0º 

orientations further to the plane of symmetry (from top to bottom). Laminate 

[45/−45/02]3𝑠𝑠 

 

 σzz σxz σyz 

90 

 

90 

0 

Figure 9. Stresses σ𝒛𝒛z, σx𝒛𝒛 y σ𝒚𝒚𝒚𝒚 (from left to right) for the plies with 90° and 0º 

orientations further to the plane of symmetry (from top to bottom). Laminate [902/02]3𝑠𝑠 
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Soutis et al. [40] experimentally observed the appearance of warping in the laminate 

around the hole. In this work, the model reproduced that phenomenon. In both 

laminates, the stress σzz at the edge of the hole change from tensile to compression 

when the angular coordinate varies. Delamination could appear in areas with tensile 

stress σzz, although this failure mode was not explicitly modelled. 

The stress σxz presents axial antisymmetry with respect to the Z-axis in both laminates. 

In the [45/−45/02]3𝑠𝑠 laminate, there is also symmetry with respect to the X-axis and 

antisymmetry with respect to the Y-axis in the ply at 0º nearest to the top surface. In the 

[902/02]3𝑠𝑠 laminate, this behaviour also appears in the second ply at 90° of the 

sublaminate. The maximum shear stress σxz is twice as the stress σyz for all plies of both 

laminates. 

In both laminates, the stress σyz presents axial antisymmetry with respect to the Z-axis. 

In the [902/02]3𝑠𝑠 laminate, all the plies present symmetry with respect to the Y-axis and 

antisymmetry with respect to the X-axis. This behaviour is the opposite to that observed 

for stress σxz. 

The areas of the different plies, in which the highest interlaminar shear stresses appear, 

are the most susceptible to transverse shear failure. The maximum σxz is located at the 

hole-edge in the applied load direction for the two laminates analysed, and for the stress 

σyz, the maximum value point is placed at 90º from the load direction. The points at 

which these stresses are null are located at 90º from those corresponding to the 

maximum values. 

The evolution of the interlaminar stresses along the thickness in four locations was also 

analysed for the two laminates. Three of the locations correspond to elements located in 
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the edge of the hole (locations A1, A2 and B) and the other to the free-edge (location 

C), Fig 10. The locations A1, A2 and C are on the mid-line perpendicular to the load 

direction. The distance between location A1 and A2 is 2 mm and they are in the area of 

highest stress σxx. Location B corresponds to elements at the edge of the hole in the 

direction of application of the load, in which the interlaminar stress σxz is maximum. 

In both laminates, the stress σzz presents a symmetry with respect to the middle plane of 

the laminate (Fig.11). By contrast, the stresses σxz and σyz present an antisymmetric 

distribution with respect to the same plane (Fig.12 and 13). Fig. 11 and 12 show a high 

level of stress concentration in the interlaminar stress components at the hole-edge 

(locations A1, A2 and B) with respect to the free-edge of the laminate (location C). 

 

 

 

 

 

 

 

 

Figure 10. Location of the elements where the interlaminar stress components along the 

thickness are estimated close to the hole edge perpendicular to the load direction 

A

A
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(Position A1 and A2) and in the load direction (position B), and at the free edge 

(Position C) 

Figure 11. Stress σ𝒛𝒛z distribution along laminate thickness. Left: Laminate [45/−45/02]3𝑠𝑠. 

Right: Laminate [902/02]3𝑠𝑠 

Figure 12. Stress σx𝒛𝒛 distribution along laminate thickness. Left: Laminate [45/−45/02]3𝑠𝑠. 

Right: Laminate [902/02]3𝑠𝑠. 
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Figure 13. Stress σy𝒛𝒛 distribution along laminate thickness. Left: Laminate [45/−45/02]3S. 

Right: Laminate [902/02]3𝑠𝑠. 

 

Tensile stress σzz is observed in the locations A2 and B (at the hole-edge). For this 

reason, in these two areas, delamination damage can be produced. By contrast, in 

location A1, σzz is in compression and thus delamination is restricted. In both laminates, 

the distribution of tensile stress in locations A2 and B is of the same order, with the 

compression stress (location A1) being higher in laminate [902/02]3𝑠𝑠. The maximum 

stress σzz appears close to the plane of symmetry of the laminate where the largest block 

of plies at 0º (four plies) in both laminates is located. In laminate [45/−45/02]3s, small 

oscillations of this stress component appear in the ply interfaces; this phenomenon is not 

observed in the other laminate. 

Also, in the [45/−45/02]3s laminate, the distribution of the interlaminar shear stresses 

through the thickness presents oscillations in the interface between the plies. In the 

other laminate, these oscillations are much less ostensible. The shear stresses σxz and σyz 

show sign changes along the thickness in the ply interfaces in the [45/−45/02]3s 
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laminate. This phenomenon can encourage transverse shear failure due to the shear 

displacement between plies. These changes of sign do not appear in the other laminate. 

The stress σxz in location B is greater than the stress σyz in both laminates, with the 

highest value being found in the first of the laminates. By contrast, in location A1, the 

relative value of both shear stress components are the opposite, and in location A2 the 

two stress components are of the same order. 

 

4. Conclusions 

The phenomenological model proposed in this work allows to obtain the interlaminar 

stresses at the hole-edge and free-edge of an open-hole laminate subjected to in-plane 

compressive loads. The S/PMT with an isotropic continuous damage model predicted 

damage initiation in compression, modelling the orthotropic behaviour of the laminate. 

In the laminates analysed, the damage initiated in the middle plane of the laminate, 

where the thickest block of plies oriented in the direction of the load is located. 

Subsequently, the damage progressively propagated to the closest block of plies with 

the same orientation to the top and bottom surface. This zone can be identified, 

therefore, with the area affected by microbuckling, characteristic of the compression 

loads that are applied. These results show that is possible to characterize the damage by 

microbuckling with the proposed model, without using additional elements such as 

cohesive elements or mesh separation techniques, and thus reducing the computational 

cost. 

The model also can predict the influence of the stacking sequence on the interlaminar 

stresses that appear close to the hole. The distribution of the interlaminar stresses 

around the hole presented symmetry with respect to the load direction and the 



25 
 

perpendicular axis. Values of interlaminar stresses with different signs were found as 

the angular coordinate varied from 0º to 360º. The maximum and minimum values were 

located in different angular positions for each stress component and laminate. The 

positions can be aligned with the axis of application of the load, the perpendicular axis 

or in points of angular coordinates at odd multiples of 45°. 

The alternate tensile and compressive values of the stress σzz around the hole 

reproduced the warping observed experimentally by other authors. In this area, 

delamination damage could appear. 

 

Acknowledgement 

The authors thank the funds received for the development of this work from Ministry of 

Economy and Finance of Spain within the framework of the project DPI2013-42240-R 

 

 

  



26 
 

 

References 

[1] Hu FZ, Soutis C, Edge EC. Interlaminar stresses in composite laminates with a 

circular hole. Compos Struct 1997; 37: 223-232. 

[2] Sun CT, Chu GD. Reducing free edge effect on laminate strength by edge 

modification. J Compos Mater 1991; 25(2): 142–61. 

[3] Sihn S, Kim RY, Kawabe K, Tsai SW. Experimental studies of thin-ply laminated 

composites. Compos Sci Technol 2007; 67(6): 996–1008. 

[4] Pipes RB. Moiré analysis of the interlaminar shear edge effect in laminated 

composites. J Compos Mater 1971; 5: 253–69.  

[5] Islam MS, Prabhakar P. Modeling framework for free edge effects in laminates 

under thermomechanical loading. Composites Part B 2017; 116: 89–98. 

[6] Dhanesh N, Kapuria S, Achary GGS. Accurate prediction of three-dimensional free 

edge stress field in composite laminates using mixed-field multiterm extended 

Kantorovich method. Acta Mech 2017; 228: 2895–919. 

[7] Hajikazemi M, Van Paepegem W. A variational model for free-edge interlaminar 

stress analysis in general symmetric and thin-ply composite laminates. Compos Struct 

2018; 184: 443–51. 

[8] Solis A, Sánchez-Sáez S, Barbero E. Influence of ply orientation on free-edge 

effects in laminates subjected to in-plane loads. Compos Part B - Eng 2018; 153: 149-

158. 

[9] Suemasu H, Naito Y, Gozu K, Aoki Y. Damage initiation and growth in composite 

laminates during open hole compression tests. Advanced Composite Materials. 

2012; 21(3): 209–220 



27 
 

 

[10] Suemasu H, Takahashi H, Ishikawa T. On failure mechanisms of composite 

laminates with an open hole subjected to compressive load. Composites Science and 

Technology. 2006; 66: 634–641. 

[11] Ko, CC, Lin, CC. Method for calculating the interlaminar stresses in symmetric 

laminates containing a circular hole. AIAA Journal. 1992; 30(1): 197-204. 

[12] Iarve EV, Pagano NJ. Singular full-field stresses in composite laminates with an 

open hole. International Journal of Solids and Structures. 2001; 38: 1–28. 

[13] Hahn HT,  Willianms, JG .Compression failure mechanisms in unidirectional 

composites. 1984. NASA Technical Memorandum 85834. 

[14] Rosen BW. The tensile failure of fibrous composites. AIAA Journal 1964; 2(11): 

1885-1911. 

[15] Barbero EJ. Prediction of compression strength of unidirectional polymer matrix 

composites. J Compos Mater 1998; 5(32): 483-502. 

[16] Su ZC, Tay TE, Ridha M, Chen BY. Progressive damage modeling of open-hole 

composite laminates under compression. Compos Struct 2015; 122: 507–517. 

[17] Wisnom MR, Hallet SR, Soutis C. Scaling effects in notched composites. Journal 

of Composite Materials. 2010; 44(2): 195–209. 

[18] Soutis C, Curtis PT, Fleck NA. Static compression failure of notched carbon fibre 

composite. Proceedings: Mathematical and physical sciences 1993; 440(1901):241-256. 

[19] Waas AM, Babcock CD, Query J, Knauss WG. An experimental study of 

compression failure of fibrous laminated composites in the presence of stress 

concentration. International Journal Solids and Structures. 1990; 26 (9/10): 1071–98. 



28 
 

[20] Moure MM, García-Castillo SK, Sanchez-Saez S, Barbero E, Barbero EJ. 

Influence of ply cluster thickness and location on matrix cracking evolution in open-

hole composite laminates. Compos Part B - Eng 2016; 95: 40-47. 

[21] Green BG, Wisnom MR, Hallett SR. An experimental investigation into the tensile 

strength scaling of notched composites. Compos Part A - Appl S 2007; 38: 867-78. 

[22] Hallett SR, Green BG, Jiang WG, Wisnom MR. An experimental and numerical 

investigation into the damage mechanisms in notched composites. Compos Part A - 

Appl S 2009;40: 613–24. 

[23] Chen BY, Tay TE, Baiz PM, Pinho ST. Numerical analysis of size effects on open-

hole tensile composite laminates. Compos Part A - Appl S 2013; 47: 52-62. 

[24] Leopold C, Schütt M, Liebig WV, Philipkowski T, Kürten J, Schulte K, Fiedler B. 

Compression fracture of CFRP laminates containing stress intensifications. Materials 

2017; 10: 1039. 

[25] Whitney J, Nuismer R. Stress fracture criteria for laminated composites containing 

stress-concentrations. J Compos Mater 1974; 8:253–65. 

[26] Chen P, Shen Z, Wang JY. Prediction of the strength of notched fiber-dominated 

composite laminates. Compos Sci Technol 2001; 61(9): 1311-1321. 

[27] Camanho PP, Erçin GH, Catalanotti G, Mahdi S, Linde P. A finite fracture 

mechanics model for the prediction of the open-hole strength of composite laminates. 

Compos Part A - Appl S 2012; 43(8): 1219-1225. 

[28] Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids 1960; 

8(2): 100–104. 



29 
 

[29] Barbero EJ, Cortes DH. A mechanistic model for transverse damage initiation, 

evolution, and stifness reduction in laminated composites. Compos Part B - Eng 2010; 

41: 124-132. 

[30] Moure MM, Otero F, Garcia-Castillo SK, Sanchez-Saez S, Barbero E, Barbero EJ. 

Damage evolution in open-hole laminated composite plates subjected to in-plane loads. 

Compos Struct 2015; 133: 1048–1057. 

[31] Chaboche J-L. A continuum damage theory with anisotropic and unilateral 

damage. Rech Aeros 1995; 2: 139-147. 

[32] Kachanov L. Introduction to continuum damage mechanics. Springer Netherlands, 

1986. 

[33] Barbero EJ, De Vivo L. A constitutive model for elastic damage in fiber-reinforced 

PMC laminae. Int J Damage Mech 2001; 10: 73-93. 

[34] Maimí P, Camanho PP, Mayugo JA, Dávila CG. A continuum damage model for 

composite laminates: Part I - Constitutive model. Mech Mater 2007; 39: 897-908. 

[35] Wang L, Zheng C, Luo H, Wei S, Wei Z. Continuum damage modeling and 

progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos 

Struct 2015; 134: 475-482. 

[36] Rastellini F, Oller S, Salomon O, Oñate E. Composite materials non-linear 

modelling for long fibre reinforced laminates: Continuum basis, computational aspects 

and validations. Comput Struct 2008; 86 (9): 879-896. 

[37] Salomon O, Rastellini F, Oller S, Oñate E. Fatigue prediction for composite 

materials and structures. In: Symposium on the evaluation, control and prevention of 

high cycle fatigue. Granada, Spain, 2005. 



30 
 

[38] Martinez X, Oller S, Barbero E. Caracterización de la delaminación en materiales 

compuestos mediante la teoría de mezclas serie/paralelo. Revista Internacional de 

Métodos Numéricos para Cálculo y Diseño en Ingeniería 2010; 3(27): 192-193. 

[39] Martinez X, Oller S. Numerical simulation of matrix reinforced composite 

materials subjected to compression loads. Arch Comput Method E 2009; 16(4): 357-

397. 

[40] Soutis C, Fleck NA, Curtis PT. Hole-hole interaction in carbon fibre/epoxy 

laminates under uniaxial compression. Composites 1991; 22(1): 31-38. 

[41] Rastellini F. Modelización Numérica de la No-Linealidad Constitutiva de 

Laminados Compuestos. PhD thesis (In spanish). Polytechnic University of Catalonia 

(UPC). Barcelona, 2006. 

[42] Kachanov L. Introduction to continuum damage mechanics. Springer Netherlands, 

1986. 

[43] Oller S. Fractura mecánica. Un enfoque global. Publicaciones CIMNE, 2001. 

[44] Simo JC, Ju JW. Strain and stress-based continuum damage models-I. Formulation. 

Int J Solids Struct 1987; 23(7): 821-840. 

[45] Oliver J, Cervera M, Oller S, Lubliner J. Isotropic damage models and smeared 

crack analysis of concrete. In: Second International Conference on Computer Aided 

Analysis and Design of Concrete Structures. Austria, 1990. 

[46] Oller S. Dinámica No Lineal. Publicaciones CIMNE, 2001. 

[47] Oller S. Simulación Numérica del Comportamiento Mecánico de los Materiales 

Compuestos. Publicaciones CIMNE, 2003. 

 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7003881173&zone=

