11 research outputs found

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    Get PDF
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    Mid-Holocene emergence of a lowfrequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies

    No full text
    International audienceThe nature and tempo of Holocene climate variability is examined in the record of forest vegetation from western Mediterranean marine core MD95-2043. Episodes of forest decline occurred at 10.1, 9.2, 8.3, 7.4, 5.4-4.5 and 3.7-2.9 cal. ka BP, and between 1.9 cal. ka BP and the top of the record (1.3cal. ka BP). Wavelet analysis confirms a ~900 yr periodicity prior to and during the early Holocene and the dominance of a ~1750 yr periodicity after 6 cal. ka BP. The ~900 yr periodicity has counterparts in numerous North Atlantic and Northern Hemisphere palaeoclimate records, and in solar irradiance proxies (Δ14C and 10Be), and may relate to a Sun-climate connection during the early Holocene. Comparisons between the MD95-2043 forest record and strategically located records from Morocco, Iceland, Norway and Israel suggest that the ~1750 yr mid- to late-Holocene oscillation reflects shifts between a prevailing strong and weak state of the zonal flow, with impacts similar to the positive and negative modes of the present-day North Atlantic Oscillation (NAO). The mid- to late-Holocene millennial oscillation in zonal flow appears closely coupled to North Atlantic surface ocean circulation dynamics, and may have been driven by an internal oscillation in deep-water convection strength. The findings suggest that the mid-Holocene transition in western Mediterranean climate was accompanied by a shift in the fundamental tempo of millennial-scale variability, reflecting contrasting sensitivity of the North Atlantic climate system to different forcing factors (solar versus oceanic) under deglacial and fully interglacial conditions

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    No full text
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    No full text
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    No full text
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    No full text
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence

    Get PDF
    IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs
    corecore