177 research outputs found

    Factors that potentially influence successful weight loss for adults with intellectual disabilities: a qualitative comparison

    Get PDF
    Background: People with intellectual disabilities are more at risk of obesity than the general population. Emerging literature indicates that multicomponent interventions are most effective, however, individual results are variable and little research exists as to why this is the case. Methods: Focus groups were conducted to explore lived experiences between two groups of adults with intellectual disabilities; an overweight group (n= 6) and a group identified as successful in losing weight (n= 6). Similarities and differences were explored across four domains. Transcripts were produced and analysed using Theoretical Thematic Analysis. Results: Similarities included service centre supports, basic food knowledge and issues restricting independence. The successful weight loss group had also internalised health messages, engaged with external reinforcement programmes, responded to positive feedback and demonstrated healthier dietary habits. Conclusion: Weight management interventions would benefit from understanding the influence that internalisation of health messages, effective reinforcement systems and positive feedback can have on supporting the adoption of healthier habits.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This research was supported by funding from the charity RESPECT and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. PCOFUND-GA-2013-608728. Additional funding for PhD research was provided by Department of Education and Learning (DEL).peer-reviewe

    The Interplay between PolyQ and Protein Context Delays Aggregation by Forming a Reservoir of Protofibrils

    Get PDF
    Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders caused by the expansion of CAG codon repeats, which code for polyQ in the corresponding gene products. These diseases are associated with the presence of amyloid-like protein aggregates, induced by polyQ expansion. It has been suggested that the soluble aggregates rather than the mature fibrillar aggregates are the toxic species, and that the aggregation properties of polyQ can be strongly modulated by the surrounding protein context. To assess the importance of the protein carrier in polyQ aggregation, we have studied the misfolding pathway and the kinetics of aggregation of polyQ of lengths above (Q41) and below (Q22) the pathological threshold fused to the well-characterized protein carrier glutathione S-transferase (GST). This protein, chosen as a model system, is per se able to misfold and aggregate irreversibly, thus mimicking the behaviour of domains of naturally occurring polyQ proteins. We prove that, while it is generally accepted that the aggregation kinetics of polyQ depend on its length and are faster for longer polyQ tracts, the presence of GST alters the polyQ aggregation pathway and reverses this trend. Aggregation occurs through formation of a reservoir of soluble intermediates whose populations and kinetic stabilities increase with polyQ length. Our results provide a new model that explains the toxicity of expanded polyQ proteins, in which the interplay between polyQ regions and other aggregation-prone domains plays a key role in determining the aggregation pathway

    Enhanced electrochemical reduction of hydrogen peroxide by Co3O4 nanowire electrode

    Get PDF
    Crystalline Co3O4 nanowire arrays with different morphologies grown on Ni foam were investigated by varying the reaction temperature, the concentration of precursors, and reaction time. The Co3O4 nanowires synthesized under typical reaction condition had a diameter range of approximately 500–900 nm with a length of 17 µm. Electrochemical reduction of hydrogen peroxide (H2O2) of the optimized Co3O4 nanowire electrode was studied by cyclic voltammetry. A high current density of 101.8 mA cm−2 was obtained at −0.4 V in a solution of 0.4 M H2O2 and 3.0 M NaOH at room temperature compared to 85.8 mA cm−2 at −0.35 V of the Co3O4 nanoparticle electrode. Results clearly indicated that the Ni foam supported Co3O4 nanowire electrode exhibited superior catalytic activity and mass transport kinetics for H2O2 electrochemical reduction

    Gingival Fibroblasts Display Reduced Adhesion and Spreading on Extracellular Matrix: A Possible Basis for Scarless Tissue Repair?

    Get PDF
    Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury

    Budding Yeast Pch2, a Widely Conserved Meiotic Protein, Is Involved in the Initiation of Meiotic Recombination

    Get PDF
    Budding yeast Pch2 protein is a widely conserved meiosis-specific protein whose role is implicated in the control of formation and displacement of meiotic crossover events. In contrast to previous studies where the function of Pch2 was implicated in the steps after meiotic double-strand breaks (DSBs) are formed, we present evidence that Pch2 is involved in meiotic DSB formation, the initiation step of meiotic recombination. The reduction of DSB formation caused by the pch2 mutation is most prominent in the sae2 mutant background, whereas the impact remains mild in the rad51 dmc1 double mutant background. The DSB reduction is further pronounced when pch2 is combined with a hypomorphic allele of SPO11. Interestingly, the level of DSB reduction is highly variable between chromosomes, with minimal impact on small chromosomes VI and III. We propose a model in which Pch2 ensures efficient formation of meiotic DSBs which is necessary for igniting the subsequent meiotic checkpoint responses that lead to proper differentiation of meiotic recombinants

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes

    Sympatric Spawning but Allopatric Distribution of Anguilla japonica and Anguilla marmorata: Temperature- and Oceanic Current-Dependent Sieving

    Get PDF
    Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24°C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them “temperate” and “tropical” eels, respectively

    Lack of Galectin-3 Drives Response to Paracoccidioides brasiliensis toward a Th2-Biased Immunity

    Get PDF
    There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3−/−) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3−/− macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response

    Ecology of the Scorpion, Microtityus jaumei in Sierra de Canasta, Cuba

    Get PDF
    An assessment of the population dynamics of Microtityus jaumei Armas (Scorpiones: Buthidae) on the slopes south of Sierra de Canasta, Guantánamo Province, Cuba show an increase in activity over the year (≤ 0.05). The activity peak is related to the reproductive period from June to November. The abundance of scorpions was significantly related to density of the canopy and thickness of the substrate

    Pch2 Links Chromosome Axis Remodeling at Future Crossover Sites and Crossover Distribution during Yeast Meiosis

    Get PDF
    Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing
    corecore