143 research outputs found

    ANALYSIS OF COCONUT ETHYL ESTER (BIODIESEL) AND FOSSIL DIESEL BLENDING: PROPERTIES AND CORROSION CHARACTERISTICS

    Get PDF
    The effect of biodiesel and its blends synthesized from coconut oil (CNO) via alkali catalyzed transeterification on the key fuel properties and corrosion characteristics of copper were investigated. The transesterification of the CNO via ethanol in the presence of potassium hydroxide was performed and the resulting coconut oil ethyl ester (COEE) was blended with fossil diesel (B0).  The fuel properties such as density, kinematic viscosity (KV), pour and cloud points (PP and CP, respectively) and American Petroleum Institute of Gravity (API) of B0, COEE-diesel blend (B50) and COEE (B100) were characterized and compared with that of ASTM D6751 and EN14214 standards. Static immersion tests were conducted by exposing copper coupons toB0, B50 and B100 at different temperatures (50, 65 and 80 oC) for 5 days.  Corrosion rates of copper in these fuels were determined by weight loss method. Also, during the period of investigation, these fuels were analyzed by measuring total acid number (TAN). The results showed that the density, KV, PP and CPincreased while the API gravity decreased as the percentage of the biodiesel in the blend increased. The highest corrosion rates for copper at the end of the investigation were 0.054, 0.0954 and 0.139 mpy in B0, B50 and B100, respectively. The minimum TAN (0.17 mg KOH/g) and maximum TAN (0.62 mg KOH/g) were observed in B0 and B100 containing copper, respectively. http://dx.doi.org/10.4314/njt.v35i1.1

    High-sensitivity cardiac troponin I improves cardiovascular risk prediction in older men: HIMS (The Health in Men Study)

    Get PDF
    Background: The Framingham Risk Score estimates the 10-year risk of cardiovascular events. However, it performs poorly in older adults. We evaluated the incremental benefit of adding high-sensitivity cardiac troponin I (hs-cTnI) to the Framingham Risk Score. Methods and Results: The HIMS (Health in Men Study) is a cohort study of community-dwelling men aged 70 to 89 years in Western Australia. Participants were identified from the electoral roll, with a subset undergoing plasma analysis. Hs-cTnI (Abbott Architect i2000SR) was measured in 1151 men without prior cardiovascular disease. The Western Australia Data Linkage System was used to identify incident cardiovascular events. After 10 years of follow-up, 252 men (22%) had a cardiovascular event (CVE+) and 899 did not (CVE–). The Framingham Risk Score placed 148 (59%) CVE+ and 415 (46%) CVE– in the high-risk category. In CVE– men, adding hs-cTnI affected the risk categories of 244 (27.2%) men, with 64.8% appropriately reclassified to a lower and 35.2% to a higher category, which decreased the number of high-risk men in the CVE– to 39%. In CVE+ men, adding hs-cTnI affected the risk categories of 61 (24.2%), with 50.8% appropriately reclassified to a higher and 49.2% to a lower category and 82.5% remaining above the 15% risk treatment threshold. The net reclassification index was 0.305 (P<0.001). Adding hs-cTnI increased the C-statistic modestly from 0.588 (95% CI, 0.552–0.624) to 0.624 (95% CI, 0.589–0.659) and improved model fit (likelihood ratio test, P<0.001). Conclusions: Adding hs-cTnI to the Framingham Risk Score provided incremental prognostic benefit in older men, especially aiding reclassification of individuals into a lower risk category

    Fibrosis in the kidney: is a problem shared a problem halved?

    Get PDF
    Fibrotic disorders are commonplace, take many forms and can be life-threatening. No better example of this exists than the progressive fibrosis that accompanies all chronic renal disease. Renal fibrosis is a direct consequence of the kidney's limited capacity to regenerate after injury. Renal scarring results in a progressive loss of renal function, ultimately leading to end-stage renal failure and a requirement for dialysis or kidney transplantation

    Palmitoleate Induces Hepatic Steatosis but Suppresses Liver Inflammatory Response in Mice

    Get PDF
    The interaction between fat deposition and inflammation during obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD). The present study examined the effects of palmitoleate, a monounsaturated fatty acid (16∶1n7), on liver metabolic and inflammatory responses, and investigated the mechanisms by which palmitoleate increases hepatocyte fatty acid synthase (FAS) expression. Male wild-type C57BL/6J mice were supplemented with palmitoleate and subjected to the assays to analyze hepatic steatosis and liver inflammatory response. Additionally, mouse primary hepatocytes were treated with palmitoleate and used to analyze fat deposition, the inflammatory response, and sterol regulatory element-binding protein 1c (SREBP1c) activation. Compared with controls, palmitoleate supplementation increased the circulating levels of palmitoleate and improved systemic insulin sensitivity. Locally, hepatic fat deposition and SREBP1c and FAS expression were significantly increased in palmitoleate-supplemented mice. These pro-lipogenic events were accompanied by improvement of liver insulin signaling. In addition, palmitoleate supplementation reduced the numbers of macrophages/Kupffer cells in livers of the treated mice. Consistently, supplementation of palmitoleate decreased the phosphorylation of nuclear factor kappa B (NF-κB, p65) and the expression of proinflammatory cytokines. These results were recapitulated in primary mouse hepatocytes. In terms of regulating FAS expression, treatment of palmitoleate increased the transcription activity of SREBP1c and enhanced the binding of SREBP1c to FAS promoter. Palmitoleate also decreased the phosphorylation of NF-κB p65 and the expression of proinflammatory cytokines in cultured macrophages. Together, these results suggest that palmitoleate acts through dissociating liver inflammatory response from hepatic steatosis to play a unique role in NAFLD

    Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase β

    Get PDF
    Background: Altered expression of DNA polymerase β (Pol β) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol β over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol β. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol β over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol β expression. We observed elevated expression of Pol β in stomach adenomas and thyroid follicular carcinomas, but reduced Pol β expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF
    corecore