4,797 research outputs found

    Development of High Efficiency (14%) Solar Cell Array Module

    Get PDF
    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture

    Development of high efficiency (14 percent) solar cell array module

    Get PDF
    Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices

    Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    Get PDF
    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksiin and at least 31 ksiin for the weld material when exposed to AF-M315E monopropellant

    Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Composites Part A: Applied Science and Manufacturing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composites Part A: Applied Science and Manufacturing Vol. 65 (2014), DOI: 10.1016/j.compositesa.2014.06.014Combined homogenisation and sonication treatments of micron-sized lyocell fibres were used to generate microfibrillated cellulose (MFC) with fibril diameters of ∼350 nm. No further reduction in fibril diameter was observed after 30 min treatment. Poly(vinyl alcohol) (PVA) composites reinforced with these fibrils were fabricated using solvent casting and physical and mechanical properties were investigated. The presence of MFC in PVA increased the thermal degradation of the polymer. An increase in both the tensile strength and modulus of the composites was observed for up to 3 wt.% of fibrils; beyond this point no significant increases were observed. An estimate of ∼39 GPa is made for the fibril modulus based on this increase. Stress-transfer between the polymer resin and the fibrils was investigated using Raman spectroscopy. Stress transfer in the composite is shown to be greater than that of a pure network of fibres, indicating a good fibre–matrix bond.Royal Thai Governmen

    Macrophage transactivation for chemokine production identified as a negative regulator of granulomatous inflammation using agent-based modeling

    Get PDF
    Cellular activation in trans by interferons, cytokines and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and / or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation

    The biological context of HIV-1 host interactions reveals subtle insights into a system hijack

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to replicate, HIV, like all viruses, needs to invade a host cell and hijack it for its own use, a process that involves multiple protein interactions between virus and host. The HIV-1, Human Protein Interaction Database available at NCBI's website captures this information from the primary literature, containing over 2,500 unique interactions. We investigate the general properties and biological context of these interactions and, thus, explore the molecular specificity of the HIV-host perturbation. In particular, we investigate (i) whether HIV preferentially interacts with highly connected and 'central' proteins, (ii) known phenotypic properties of host proteins inferred from essentiality and disease-association data, and (iii) biological context (molecular function, processes and location) of the host proteins to identify attributes most strongly associated with specific HIV interactions.</p> <p>Results</p> <p>After correcting for ascertainment bias in the literature, we demonstrate a significantly greater propensity for HIV to interact with highly connected and central host proteins. Unexpectedly, we find there are no associations between HIV interaction and inferred essentiality. Similarly, we find a tendency for HIV not to interact with proteins encoded by genes associated with disease. Crucially, we find that functional categories over-represented in HIV-host interactions are innately enriched for highly connected and central proteins in the host system.</p> <p>Conclusions</p> <p>Our results imply that HIV's propensity to interact with highly connected and central proteins is a consequence of interactions with particular cellular functions, rather than being a direct effect of network topological properties. The lack of a propensity for interactions with phenotypically essential proteins suggests a selective pressure to minimise virulence in retroviral evolution. Thus, the specificity of HIV-host interactions is complex, and only superficially explained by network properties.</p

    Launch Pad in a Box

    Get PDF
    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit
    • …
    corecore