427 research outputs found
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1
An ensemble of multi-layer scintillators is discussed as an option of the
high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic
measurements of neutrino-less double beta decays. A prototype detector MOON-1,
which consists of 6 layer plastic-scintillator plates, was built to study the
sensitivity of the MOON-type detector. The scintillation photon collection and
the energy resolution, which are key elements for the high-sensitivity
experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons
and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region,
respectively. The multi-layer plastic-scintillator structure with good energy
resolution as well as good background suppression of beta-gamma rays is crucial
for the MOON-type detector to achieve the inverted hierarchy neutrino mass
sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met
Bypassing anaphase by fission yeast cut9 mutation: requirement of cut9+ to initiate anaphase.
Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value
For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
The selective elimination of messenger RNA underlies the mitosis–meiosis switch in fission yeast
The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis–meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis
Differential Item Functioning on Antisocial Behavior Scale Items for Adolescents and Young Adults from Single-Parent and Two-Parent Families
We investigated measurement equivalence in two antisocial behavior scales (i.e., one scale for adolescents and a second scale for young adults) by examining differential item functioning (DIF) for respondents from single-parent (n = 109) and two-parent families (n = 447). Even though one item in the scale for adolescents and two items in the scale for young adults showed significant DIF, the two scales exhibited non-significant differential test functioning (DTF). Both uniform and nonuniform DIF were investigated and examples of each type were identified. Specifically, uniform DIF was exhibited in the adolescent scale whereas nonuniform DIF was shown in the young adult scale. Implications of DIF results for assessment of antisocial behavior, along with strengths and limitations of the study, are discussed
Análise de atitudes de alunos universitários em relação à estatística por meio da teoria de resposta ao item
Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation
Nonparametric IRT analysis of Quality-of-Life Scales and its application to the World Health Organization Quality-of-Life Scale (WHOQOL-Bref)
- …
