12 research outputs found
Insulin sensitivity, body composition and bone mineral density after testosterone treatment in transgender youth with and without prior GnRH agonist therapy
Background: 1.8% of youth identify as transgender; a growing proportion are transgender male (female sex, male gender identity). Many receive gonadotropin releasing hormone agonist (GnRHa) therapy to suppress endogenous puberty and/or will start testosterone to induce secondary sex characteristics that align with gender identity. Objective(s): To determine the effects of 12 months of testosterone on cardiometabolic health among transgender youth, including insulin sensitivity, body composition, and bone mineral density and whether changes in outcomes differ based on prior GnRHa treatment. Methods: Participants (n = 19, baseline age 15.0 ± 1.0 years) were examined prior to and 12 months after testosterone therapy in a longitudinal observational study. Fasted morning blood draw, a 2-hour 75-gram oral glucose tolerance test, body composition and bone mineral density (dual-energy X-ray absorptiometry) were assessed at baseline and 12 months. Insulin sensitivity was estimated by HOMA-IR and Matsuda index. Changes were compared with mixed linear regression models evaluating time (baseline, 12 months), group (GnRHa treatment yes/no), and their interaction. Results: In the entire cohort, fasted insulin decreased (median [25,75 %ile]: −3 [-5, 0] mIU/L, p = 0.044) and 2-hour glucose increased (mean ± standard deviation): +18.5 ± 28.9 mg/dL, p = 0.013 from baseline after 12 months of testosterone therapy. There were no significant changes in HOMA-IR (p = 0.062) or Matsuda index (p = 0.096), nor by GnRHa status. Absolute (+6.2 [4.7, 7.5] kg, p = 0.016) and percent fat-free mass increased (+7.3 [5.4, 9.1] %, p = 0.003) and percent fat mass declined (−7.4 [-9.3, 5.3]%, p = 0.005) for the entire cohort. There were time*group interactions for absolute (p = 0.0007) and percent fat-free mass (p = 0.033). There were time*group interactions for bone mineral content (p = 0.006). Conclusions: Twelve months of testosterone in transgender adolescents resulted in changes in body composition and bone mineral density, with baseline differences between the +/-GnRHa group and convergence after 12 months. There were no changes in insulin sensitivity over time or between groups
Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique
A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein-immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological functio
Defining subsets of naive and memory B cells based on the ability of their progeny to somatically mutate in vitro
The increased affinity of memory antibody responses is due largely to the generation and selection of memory B cells that accumulate somatic mutations after initial antigenic stimulation. Further affinity maturation and mutation also accompany subsequent immunizations. Previous studies have suggested that, like primary antibody-forming cell (AFC) clones, secondary AFC do not accumulate further mutations and, therefore, the origins of progressive affinity maturation remain controversial. Here, we report the generation of somatically mutated memory B cell clones in vitro. Our findings confirm the existence of a naive B cell subset whose progeny, rather than generating AFC, somatically mutate and respond to subsequent antigenic stimulation. Interestingly, upon stimulation, a subset of memory B cells also generates antigen-responsive cells that accumulate further somatic mutations
CXCL13 is a plasma biomarker of germinal center activity.
International audienceSignificantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4(+) T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS(+) (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings