781 research outputs found

    The young cluster NGC 2282 : a multi-wavelength perspective

    Full text link
    We present the analysis of the stellar content of NGC~2282, a young cluster in the Monoceros constellation, using deep optical BVIBVI and IPHAS photometry along with infrared (IR) data from UKIDSS and SpitzerSpitzer-IRAC. Based on the stellar surface density analysis using nearest neighborhood method, the radius of the cluster is estimated as \sim 3.15\arcmin. From optical spectroscopic analysis of 8 bright sources, we have classified three early B-type members in the cluster, which includes, HD 289120, a previously known B2V type star, a Herbig Ae/Be star (B0.5 Ve) and a B5 V star. From spectrophotometric analyses, the distance to the cluster has been estimated as \sim 1.65 kpc. The KK-band extinction map is estimated using nearest neighborhood technique, and the mean extinction within the cluster area is found to be AV_V \sim 3.9 mag. Using IR colour-colour criteria and Hα_\alpha-emission properties, we have identified a total of 152 candidate young stellar objects (YSOs) in the region, of which, 75 are classified as Class II, 9 are Class I YSOs. Our YSO catalog also includes 50 Hα_\alpha-emission line sources, identified using slitless spectroscopy and IPHAS photometry data. Based on the optical and near-IR colour-magnitude diagram analyses, the cluster age has been estimated to be in the range of 2 - 5 Myr, which is in agreement with the estimated age from disc fraction (\sim 58\%). Masses of these YSOs are found to be \sim 0.1-2.0 M_\odot. Spatial distribution of the candidate YSOs shows spherical morphology, more or less similar to the surface density map.Comment: 16 pages, 19 Figure

    Exploring Foundations of Time-Independent Density Functional Theory for Excited-States

    Full text link
    Based on the work of Gorling and that of Levy and Nagy, density-functional formalism for many Fermionic excited-states is explored through a careful and rigorous analysis of the excited-state density to external potential mapping. It is shown that the knowledge of the ground-state density is a must to fix the mapping from an excited-state density to the external potential. This is the excited-state counterpart of the Hohenberg-Kohn theorem, where instead of the ground-state density the density of the excited-state gives the true many-body wavefunctions of the system. Further, the excited-state Kohn-Sham system is defined by comparing it's non-interacting kinetic energy with the true kinetic energy. The theory is demonstrated by studying a large number of atomic systems.Comment: submitted to J. Chem. Phy

    W40 region in the Gould Belt : An embedded cluster and H II region at the junction of filaments

    Full text link
    We present a multiwavelength study of W40 star-forming region using IR observations in UKIRT JHK bands, Spitzer IRAC bands & Herschel PACS bands; 2.12 micron H2 narrow-band imaging; & radio observations from GMRT (610 & 1280 MHz), in a FoV of ~34'x40'. Spitzer observations along with NIR observations are used to identify 1162 Class II/III & 40 Class I sources in the FoV. The NN stellar surface density analysis shows that majority of these YSOs constitute the embedded cluster centered on the source IRS1A South. Some YSOs, predominantly younger population, are distributed along & trace the filamentary structures at lower stellar surface density. The cluster radius is obtained as 0.44pc - matching well with the extent of radio emission - with a peak density of 650pc^-2. The JHK data is used to map the extinction which is subsequently used to compute the cloud mass. It has resulted in 126 Msun & 71 Msun for the central cluster & the northern IRS5 region, respectively. H2 narrow-band imaging displays significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio analysis shows this region as having blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission SED analysis is used to obtain physical parameters of the overall region & the IRS5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster & the high-mass star(s) - followed by a second epoch which is spreading into the filaments as uncovered by the Class I sources & even younger protostellar sources along the filaments. The IRS5 HII region displays indications of swept-up material which has possibly led to the formation of protostars.Comment: 17 pages, 12 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Deep GeMS/GSAOI near-infrared observations of N159W in the Large Magellanic Cloud

    Full text link
    Aims. The formation and properties of star clusters at the edge of H II regions are poorly known, partly due to limitations in angular resolution and sensitivity, which become particularly critical when dealing with extragalactic clusters. In this paper we study the stellar content and star-formation processes in the young N159W region in the Large Magellanic Cloud. Methods. We investigate the star-forming sites in N159W at unprecedented spatial resolution using JHKs-band images obtained with the GeMS/GSAOI instrument on the Gemini South telescope. The typical angular resolution of the images is of 100 mas, with a limiting magnitude in H of 22 mag (90 percent completeness). Photometry from our images is used to identify candidate young stellar objects (YSOs) in N159W. We also determine the H-band luminosity function of the star cluster at the centre of the H II region and use this to estimate its initial mass function (IMF). Results. We estimate an age of 2 + or - 1 Myr for the central cluster, with its IMF described by a power-law with an index of gamma = - 1.05 + or - 0.2 , and with a total estimated mass of 1300 solar mass. We also identify 104 candidate YSOs, which are concentrated in clumps and subclusters of stars, principally at the edges of the H II region. These clusters display signs of recent and active star-formation such as ultra-compact H II regions, and molecular outflows. This suggests that the YSOs are typically younger than the central cluster, pointing to sequential star-formation in N159W, which has probably been influenced by interactions with the expanding H II bubble

    Study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex

    Full text link
    We present results of a high resolution study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex in several molecular species tracing different physical conditions. These include three isotopologues of carbon monoxide (CO), ammonia (NH3_3), carbon monosulfide (CS). The aim of this work is to study the general structure and kinematics of the filamentary cloud, its fragmentation and physical parameters. The gas temperature is derived from the NH3_3 (J,K)=(1,1),(2,2)(J,K) = (1,1), (2,2) and 12^{12}CO(2--1) lines and the 13^{13}CO(1--0), 13^{13}CO(2--1) emission is used to investigate the overall gas distribution and kinematics. Several dense clumps are identified from the CS(2--1) data. Values of the gas temperature lie in the ranges 103510-35 K, column density N(H2)N(\mathrm{H}_2) reaches the value 5.1 1022^{22} cm2^{-2}. The width of the filament is of order 1 pc. The masses of the dense clumps range from 30 \sim 30 M_\odot to 160 \sim 160 M_\odot. They appear to be gravitationally unstable. The molecular emission shows a gas dynamical coherence along the filament. The velocity pattern may indicate longitudinal collapse.Comment: 10 pages, 9 figures, accepted for publication in Research in Astronomy and Astrophysic

    Low-mass young stellar population and star formation history of the cluster IC 1805 in the W4 H{\sc ii} region

    Full text link
    W4 is a giant H{\sc ii} region ionized by the OB stars of the cluster IC~1805. The H{\sc ii} region/cluster complex has been a subject of numerous investigations as it is an excellent laboratory for studying the feedback effect of massive stars on the surrounding region. However, the low-mass stellar content of the cluster IC~1805 remains poorly studied till now. With the aim to unravel the low-mass stellar population of the cluster, we present the results of a multiwavelength study based on deep optical data obtained with the Canada-France-Hawaii Telescope, infrared data from 2MASS, SpitzerSpitzer Space Telescope and X-ray data from ChandraChandra Space Telescope. The present optical dataset is complete enough to detect stars down to 0.2~M_\odot, which is the deepest optical observations so far for the cluster. We identified 384 candidate young stellar objects (YSOs; 101 Class I/II and 283 Class III) within the cluster using various colour-colour and colour-magnitude diagrams. We inferred the mean age of the identified YSOs to be \sim 2.5 Myr and mass in the range 0.3 - 2.5 M_\odot. The mass function of our YSO sample has a power law index of -1.23 ±\pm 0.23, close to the Salpeter value (-1.35), and consistent with those of other star-forming complexes. We explored the disk evolution of the cluster members and found that the diskless sources are relatively older compared to the disk bearing YSO candidates. We examined the effect of high-mass stars on the circumstellar disks and found that within uncertainties, the influence of massive stars on the disk fraction seems to be insignificant. We also studied the spatial correlation of the YSOs with the distribution of gas and dust of the complex to conclude that IC 1805 would have formed in a large filamentary cloud.Comment: Accepted for publication in MNRAS; 34 pages, 10 figure

    Star formation activity in the Galactic H II region Sh2-297

    Full text link
    We present a multiwavelength study of the Galactic H II region Sh2-297, located in Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm^-3 and 9.15 x 10^5 cm^-6 pc using the radio continuum observations at 610 and 1280 MHz, and VLA archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~ 7.5' x 7.5' centered on Sh2-297 using grism slitless spectroscopy (to identify the Halpha emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color (CC) and color-magnitude (CM) diagrams, giving 50 red sources (H-K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~ 0.1 - 2 Msolar and 0.5 - 2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~ 1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1 - 25 mag) from literature and NIR data for the region, spectral energy distribution (SED) models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star towards the cold dark cloud LDN1657A located west of Sh2-297.Comment: 19 pages, 13 figures, 3 tables. Accepted for publication in The Astrophysical Journa

    Young Stellar Population of the Bright-Rimmed Clouds BRC 5, BRC 7 and BRC 39

    Full text link
    Bright-rimmed clouds (BRCs), illuminated and shaped by nearby OB stars, are potential sites of recent/ongoing star formation. Here we present an optical and infrared photometric study of three BRCs: BRC 5, BRC 7 and BRC 39 to obtain a census of the young stellar population, thereby inferring the star formation scenario, in these regions. In each BRC, the Class I sources are found to be located mostly near the bright rim or inside the cloud, whereas the Class II sources are preferentially outside, with younger sources closer to the rim. This provides strong support to sequential star formation triggered by radiation driven implosion due to the UV radiation. Moreover, each BRC contains a small group of young stars being revealed at its head, as the next-generation stars. In particular, the young stars at the heads of BRC 5 and BRC 7 are found to be intermediate/high mass stars, which, under proper conditions, may themselves trigger further star birth, thereby propagating star formation out to long distances.Comment: 30 pages, 7 Figures, 6 Tables, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation

    Full text link
    We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and Astrophysic

    Pre-main-sequence population in NGC 1893 region: X-ray properties

    Full text link
    Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTSs) in the NGC 1893 region. We found a correlation between the X-ray luminosity, LXL_X, and the stellar mass (in the range 0.2-2.0 \msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study (\sim 0.9) for NGC 1893 is smaller than those (\sim1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 (\sim 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range \sim 0.4 Myr - 5 Myr). The decrease of the X-ray luminosity of TTSs (slope \sim -0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower LXL_X values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.Comment: 10 pages, 7 figures, Accepted for publication in New Astronom
    corecore