We investigate the star formation activity in the molecular complex
associated with the Galactic HII region Sh2-90, using radio-continuum maps
obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500
microns, and deep near-infrared observation at JHK bands, along with Spitzer
observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc
x 1.6 pc). Radio observations suggest it is an evolved HII region with an
electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a
ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII
region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7
pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of
total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the
main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 --
95 Msun), four mid-IR blobs around B stars, and a compact HII region are found
at the edge of the bubble.The velocity information derived from CO (J=3-2) data
cubes suggests that most of them are associated with the Sh2-90 region. 129
YSOs are identified (Class I, Class II, and near-IR excess sources). The
majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed
mostly in the regions of high column density. Four candidate Class 0/I MYSOs
have been found; they will possibly evolve to stars of mass >= 15 Msun. We
suggest multi-generation star formation is present in the complex. From the
evidences of interaction, the time scales involved and the evolutionary status
of stellar/protostellar sources, we argue that the star formation at the
immediate border/edges of Sh2-90 might have been triggered by the expanding HII
region. However, several young sources in this complex are probably formed by
some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and
Astrophysic