1,451 research outputs found

    Some issues concerning Large-Eddy Simulation of inertial particle dispersion in turbulent bounded flows

    Full text link
    The problem of an accurate Eulerian-Lagrangian modeling of inertial particle dispersion in Large Eddy Simulation (LES) of turbulent wall-bounded flows is addressed. We run Direct Numerical Simulation (DNS) for turbulent channel flow at shear Reynolds numbers equal to 150 and 300 and corresponding a-priori and a-posteriori LES on differently coarse grids. We then tracked swarms of different inertia particles and we examined the influence of filtering and of Sub-Grid Scale (SGS) modeling for the fluid phase on particle velocity and concentration statistics. We also focused on how particle preferential segregation is predicted by LES. Results show that even ``well-resolved'' LES is unable to reproduce the physics as demonstrated by DNS, both for particle accumulation at the wall and for particle preferential segregation. Inaccurate prediction is observed for the entire range of particles considered in this study, even when the particle response time is much larger than the flow timescales not resolved in LES. Both a-priori and a-posteriori tests indicate that recovering the level of fluid and particle velocity fluctuations is not enough to have accurate prediction of near-wall accumulation and local segregation. This may suggest that reintroducing the correct amount of higher-order moments of the velocity fluctuations is also a key point for SGS closure models for the particle equation. Another important issue is the presence of possible flow Reynolds number effects on particle dispersion. Our results show that, in small Reynolds number turbulence and in the case of heavy particles, the shear fluid velocity is a suitable scaling parameter to quantify these effects

    DNS of compressible multiphase flows through the Eulerian approach

    Full text link
    In this paper we present three multiphase flow models suitable for the study of the dynamics of compressible dispersed multiphase flows. We adopt the Eulerian approach because we focus our attention to dispersed (concentration smaller than 0.001) and small particles (the Stokes number has to be smaller than 0.2). We apply these models to the compressible (Ma=0.2, 0.5\text{Ma} = 0.2,\,0.5) homogeneous and isotropic decaying turbulence inside a periodic three-dimensional box (2563256^3 cells) using a numerical solver based on the OpenFOAMR^{R} C++ libraries. In order to validate our simulations in the single-phase case we compare the energy spectrum obtained with our code with the one computed by an eighth order scheme getting a very good result (the relative error is very small 4∗10−44*10^{-4}). Moving to the bi-phase case, initially we insert inside the box an homogeneous distribution of particles leaving unchanged the initial velocity field. Because of the centrifugal force, turbulence induce particle preferential concentration and we study the evolution of the solid-phase density. Moreover, we do an {\em a-priori} test on the new sub-grid term of the multiphase equations comparing them with the standard sub-grid scale term of the Navier-Stokes equations.Comment: 10 pages, 5 figures, preprint. Direct and Large Eddy Simulations 9, 201

    Statistical properties of an ideal subgrid-scale correction for Lagrangian particle tracking in turbulent channel flow

    Full text link
    One issue associated with the use of Large-Eddy Simulation (LES) to investigate the dispersion of small inertial particles in turbulent flows is the accuracy with which particle statistics and concentration can be reproduced. The motion of particles in LES fields may differ significantly from that observed in experiments or direct numerical simulation (DNS) because the force acting on the particles is not accurately estimated, due to the availability of the only filtered fluid velocity, and because errors accumulate in time leading to a progressive divergence of the trajectories. This may lead to different degrees of inaccuracy in the prediction of statistics and concentration. We identify herein an ideal subgrid correction of the a-priori LES fluid velocity seen by the particles in turbulent channel flow. This correction is computed by imposing that the trajectories of individual particles moving in filtered DNS fields exactly coincide with the particle trajectories in a DNS. In this way the errors introduced by filtering into the particle motion equations can be singled out and analyzed separately from those due to the progressive divergence of the trajectories. The subgrid correction term, and therefore the filtering error, is characterized in the present paper in terms of statistical moments. The effects of the particle inertia and of the filter type and width on the properties of the correction term are investigated.Comment: 15 pages,24 figures. Submitted to Journal of Physics: Conference Serie

    Coincident onset of multiple sclerosis and herpes simplex virus 1 encephalitis. a case report

    Get PDF
    Background: Along with vitamin D, smoking, body mass index and others, Epstein Barr virus, other herpesviruses and human endogenous retroviruses represent plausible environmental risk factors for multiple sclerosis. However, it is difficult to obtain direct proof of their involvement in the etiology of this condition. Case presentation: In order to contribute further evidence of the importance of these viruses, and speculate about disease-relevant interactions between these agents and a predisposed genetic background of the host, we describe the temporal association between multiple sclerosis onset and Herpes simplex 1-encephalitis in a female patient. Conclusions: This case illustrates a possible relationship between HSV-1 encephalitis and multiple sclerosis. Bearing in mind that association does not imply causation, some speculations about the etiology and pathophysiology of the two diseases can be made. The hypothesis of a genetic background predisposing to HSV-1 encephalitis and to immune-mediated demyelination is supported by the coincidence of the two conditions in this patient, along with data from animal models and genetic studies

    On the equation of degree 6

    Get PDF
    In this paper we study the Schwarz genus for the covering of the space of polynomials with distinct roots by its roots. We show that, for the first unknown case (degree 6), the genus is strictly less than the one predicted by dimension arguments, contrary to what happens in all other reflection groups

    Unsteady flow regimes in arrow-shaped micro-mixers with different tilting angles

    Get PDF
    Two arrow-shaped micro-mixers, obtained from the classical T-shaped geometry by tilting downward the inlet channels, are considered herein. The two configurations, having different tilting angle values, have been chosen since they show significantly different flow topologies and mixing performances at low Reynolds numbers. In the present paper, we use both experimental flow visualizations and direct numerical simulations to shed light on the mixing behavior of the two configurations for larger Reynolds numbers, for which the mixers present unsteady periodic flows, although in laminar flow conditions. The tilting angle influences the flow dynamics also in the unsteady regimes and has a significant impact on mixing. The configuration characterized by the lower tilting angle, i.e., α = 10°, ensures a better global mixing performance than the one with the larger angle, i.e., α = 20°

    Multi-wavelength observations of 3FGL J2039.6-5618: a candidate redback millisecond pulsar

    Get PDF
    We present multi-wavelength observations of the unassociated gamma-ray source 3FGL J2039.6-5618 detected by the Fermi Large Area Telescope. The source gamma-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor γ\gamma-ray pulsations have been detected yet. We observed 3FGL J2039.6-5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the gamma-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245±\pm0.0081 d. Its X-ray spectrum can be described by a power law with photon index ΓX=1.36±0.09\Gamma_X =1.36\pm0.09, and hydrogen column density NH<4×1020N_{\rm H} < 4 \times 10^{20} cm−2^{-2}, which gives an unabsorbed 0.3--10 keV X-ray flux of 1.02×10−131.02 \times 10^{-13} erg cm−2^{-2} s−1^{-1}. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) discovered an optical counterpart to this X-ray source, with a time-average magnitude g′∼19.5g'\sim 19.5. The counterpart features a flux modulation with a period of 0.22748±\pm0.00043 d that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, with two asymmetric peaks, suggests that the optical emission comes from two regions at different temperatures on its tidally-distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6-5618, which we propose to be a new redback system.Comment: 35 pages, 8 figures, accepted for publication on Astrophysical Journa

    Mixing sensitivity to the inclination of the lateral walls in a T-mixer

    Get PDF
    One of the simplest geometries for micro-mixers has a T-shape, i.e., the two inlets join perpendicularly the mixing channel. The cross-sections of the channels are usually square/rectangular, as straight walls facilitate experimental and modeling analysis. On the contrary, this work investigates through Computational Fluid Dynamics the effect of a cross-section with lateral walls inclined of an angle α as such an inclination may stem from different microfabrication techniques. Considering water as operating fluid, the same mixing performance as square/rectangular cross-sections is obtained for inclinations α≤3°; this indicates the maximum admissible error on the perpendicularity of the walls in the manufacturing process. Above this value, the presence of inclined walls delays the onset of the engulfment regime at higher Reynolds numbers, and for α≥23°the mixing is hampered dramatically, as the flow is unable to break the mirror symmetry and enter in the engulfment regime. At low Reynolds numbers, the mixing is moderately improved for α≥10°, because the vortex regime presents a lower degree of symmetry than that of T-mixers with straight walls

    Chamber basis of the Orlik-Solomon algebra and Aomoto complex

    Full text link
    We introduce a basis of the Orlik-Solomon algebra labeled by chambers, so called chamber basis. We consider structure constants of the Orlik-Solomon algebra with respect to the chamber basis and prove that these structure constants recover D. Cohen's minimal complex from the Aomoto complex.Comment: 16 page

    Sub-lethal 5-fluorouracil dose challenges planarian stem cells promoting transcriptional profile changes in the pluripotent sigma-class neoblasts

    Get PDF
    Under physiological conditions, the complex planarian neoblast system is a composite of hierarchically organized stem cell sub-populations with sigma-class neoblasts, including clonogenic neoblasts, endowed with larger self-renewal and differentiation capabilities, thus generating all the other sub-populations and dominating the regenerative process. This complex system responds to differentiated tissue demands, ensuring a continuous cell turnover in a way to replace aged specialized cells and maintain tissue functionality. Potency of the neoblast system can be appreciated under challenging conditions in which these stem cells are massively depleted and the few remaining repopulate the entire body, ensuring animal resilience. These challenging conditions offer the possibility to deepen the relationships among different neoblast sub-populations, allowing to expose uncanonical properties that are negligible under physiological conditions. In this paper, we employ short, sub-lethal 5-fluorouracil treatment to specifically affect proliferating cells passing through the S phase and demonstrate that S-phase slowdown triggers a shift in the transcriptional profile of sigma neoblasts, which reduces the expression of their hallmark sox-P1. Later, some cells reactivate sox-P1 expression, suggesting that some neoblasts in the earlier steps of commitment could modulate their expression profile, reacquiring a wider differentiative potential
    • …
    corecore