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Introduction.

If one wants to find the roots of an equation xm + a1x
m−1 + · · · = 0 of degree m over

C there are two immediate reductions. The first is to change variables and set a1 = 0, the
second is to reduce to the case of distinct roots or to a lower degree equation.

This leads to consider the roots as unramified covering of the open set Pm of Cm−1

complement of the discriminant hypersurface.
At the end the problem is, to give a minimum number of monodromous functions of the

coefficients (which necessarily are defined only in some open subsets of Pm) with values
the roots. It is a simple topological fact which we will recall presently, that one can always
exhibit m such functions (covering the entire Pm). It was known that, if m = pk is a prime
power this is always the minimum possible ([Va]).

In general some weak lower bounds are known.
In this paper we will study the first non prime power case m = 6 and prove:

Theorem. For an equation of degree 6 one can express the distinct roots through 5 func-
tions of the coefficients (and 5 is the minimum).

The methods in principle could be extended but at the moment we could overcome
the computational difficulties only with the help of a computer program which seems too
complex to perform in the next unknown case m = 10.

1 The Schwarz genus.

Let us formalize the discussion, Pn+1 be the space of monic polynomials of degree n+1
over C with distinct roots, the complement of the discriminant hypersurface and let

∆ := {(z1, z2, . . . , zn+1} ∈ C
n+1 | zi 6= zj , ∀i 6= j}, Pn+1 = C

n+1 − ∆/Sn+1
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(∆ is the big diagonal).

Problem. Compute the Schwarz genus g(n + 1) := g(πn+1) for the covering

πn+1 : C
n+1 − ∆ → Pn+1 = C

n+1 − ∆/Sn+1.

Definition 1.1 [Sc]. For a Galois covering π : A → B the genus g(π) is the minimum
number for which one can cover the base with open sets Ui so that the covering, restricted
to Ui is trivial.

Remark The notion of genus is a generalization, to fibrations, of the Luisternik Schnir-
lemann category of a space.

This number is interpreted by Smale in the case of πn+1, as a measure of topological
complexity for any algorithm that should compute the roots of a polynomial (cf. [Sm]).

As already remarked we can normalize to the case in which the sum of the roots is 0, this
is then the simplest example of reflection arrangement, and the question may be asked for
all such arrangements. In [DS] it has been shown that, for all reflection arrangements except
type An the genus of the associated covering is n + 1 where n is the complex dimension of
the arrangement and the cohomological dimension of the corresponding Artin braid group.

For type An the same statement is true when n + 1 = pk is a prime power (cf. [Va]).
In this paper we show that the previous statement is not always true. In fact we will

verify that, for the first case n + 1 = 6 of non prime powers, the estimate given by the
cohomological dimension is 6 instead g(6) = 5, (Theorem 7.4).

Let us recall briefly the main ideas of Schwarz for the computation of this genus, we
will restrict our discussion to finite Galois coverings, although Schwarz treats a much more
general case. The discussion that follows is extracted from ([Sc]) and it is included for
convenience of the reader.

Let then π : A → B = A/W be a finite covering associated to the free action of a finite
group W on a space A. To this covering and any positive integer k one can apply the join
construction, set:

Ak∗
π := A ∗B ∗AB ∗ · · · ∗B A := {

k
∑

i=1

tiai | 0 ≤ ti,
∑

i

ti = 1, π(ai) = π(aj), ∀i, j}

in particular Ak∗
π is a subset of the k−fold join. We have a fibration πk : Ak∗

π → B, with
fibers the join F k∗ of the fibers of π. Then we have (assume B paracompact):

Proposition 1.2. The genus g(π) ≤ k if and only if the fibration πk : Ak∗
π → B has a

section.

Proof. Let Vi be the open subset of Ak∗
π where the ith coordinate ti 6= 0, in Vi we have a

copy of A as the points where the ith coordinate ti = 1. By the standard properties of the
join the space A is a deformation retract of Vi. If s : B → Ak∗

π is a section of πk define
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Ui := s−1(Vi), the Ui cover B and by the previous remarks the fibration restricted to Ui

has a section, since it is a Galois fibration it is then trivial.

Conversely if π restricted to Ui has a section si for some covering U1, . . . , Uk let fi be a

partition of unity relative to this covering, we have that the map
∑k

i=1 fi(b)si(b) is a well
defined section of Ak∗

π .

It is useful to think of the join construction as a base change, consider for a given k the
join W ∗k of the group W , k−times.

We act on the right with W on W ∗k by (
∑

i tiwi, w) →
∑

i tiwiw and have

Ak∗
π = W ∗k ×W A, ρk : Ak∗

π → W ∗k/W.

The fibration W → W ∗k → W ∗k/W gives W ∗k/W as the kth step of Milnor’s construction
of a classifying space of W (cf. [Mi]). W ∗k/W is itself a classifying space for W fibrations
over CW-complexes of dimension < k (if one wishes one can take W ∗k/W as the k − 1
skeleton of a classifying space).

It may be useful to think of the right action of W on W ∗k as a left action by w(
∑

i tiwi) :=
∑

i tiwiw
−1, then W ∗k ×W A is the space of W orbits of the diagonal action.

Given a space X over which W acts on the left consider the quotient (X × A)/W .
(X × A)/W fibers over B, by πX(x, a) = π(a) and over X/W by ρ(x, a) = [x], where
[x] := π(x) denotes the orbit of x in X/W . We claim that:

Proposition 1.3. i) There is a 1-1 correspondence between sections of πX : (X×A)/W →
B and W equivariant maps φ : A → X.

ii) If s : B → (X × A)/W is a section of πX and φ : A → X the corresponding
equivariant map we have a commutative diagram:

A
φ

−−−−→ X

π





y
π





y

B
ρ◦s

−−−−→ X/W

and the covering π : A → B is the pullback, under ρ ◦ s of the covering π : X → X/W.

Proof. i) Given a pair (x, a) ∈ X×A let us denote by [x, a] its class in the W−orbit space.
Given an equivariant map φ : A → X consider the map σ : A → X × A → (X × A)/W
given by σ(a) = [φ(a), a] we have that for w ∈ W , σ(w(a)) = [φ(wa), wa] = [wφ(a), wa] =
[φ(a), a] = σ(a) therefore σ factors through B = A/W to a section of πX . Conversely
given a section s and a ∈ A we can choose for s(π(a)) ∈ (X × A)/W as representative in
X × A a unique element (φ(a), a) and this defines the equivariant map.

ii) By definition s(π(a)) = σ(a) = [φ(a), a] which composed with ρ gives [φ(a)] =
π(φ(a)), or ρ ◦ s ◦ π = π ◦ φ as desired. �

In the case of Ak∗
π = (W ∗k × A)/W the previous Proposition gives
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Corollary 1.4. ρk ◦ sk is a classifying map for the covering A.

The homology Hk−1(W
∗k, Z) can be computed using the chain complex associated to

the canonical cell decomposition of W ∗k (given by the join construction), as the group of
k − 1-cycles. Notice that this chain complex is a free resolution of the trivial W−module
Z up to degree k − 1.

This implies that, given any projective resolution (C∗, ∂) of the trivial W−module Z,
there are two projective W -modules P1, P2, such that:

Hk−1(W
∗k, Z) ⊕ P1 = ∂Ck ⊕ P2.

In particular H∗(W, Hk−1(W
∗k)) = H∗(W, ∂Ck).

2 The Universal Obstruction.

Proposition 1.2 allows us to use obstruction theory to help to compute g(π) when B is
a finite CW-complex (cf. [St]). One uses the fact that πi(W

∗k) = 0, ∀i < k−1, to deduce
that g(π) ≤ dimB + 1. Let dimB = n. In order to decide whether g(π) ≤ n one has to
compute the following obstruction class.

Consider H∗(W, Hn−1(W
∗k)) = H∗(W, ∂Cn). Recall that this can be computed as the

cohomology of the cochain complex Hom(C∗, ∂Cn).
In particular the map ∂n : Cn → ∂Cn is clearly a cocycle [∂n] ∈ Hn(W, Hn−1(W

∗k))
(it is immediate to remark that this class does not depend on the choice of the resolution
(C∗, ∂)). We can then consider the local system Hn−1(W

∗n) on B, and we get the cocycle
c = ρ∗[∂n], where ρ : B → BW is a classifying map for our covering and a cohomology
class [c] ∈ Hn(B,Hn−1(W

∗n)). One has (see [St] Theorem 34.2, Lemma 32.7):

Theorem 2.1. ∂n and c are obstruction cocycles for the respective problems of extending
a section to the n−dimensional skeleton.

If B is n−dimensional then g(π) ≤ n if and only if [c] = 0.

When B = BG is the classifying space of a group G (as in our case in which Pn+1 is the
classifying space of the Braid group Bn+1), we have that the Galois covering is given by a
homomorphism ρ∗ : G → W (induced by the homotopy exact sequence of the fibration π)
and one can think of the cohomology Hn(BG,Hn−1(W

∗n)) = Hn(G, Hn−1(W
∗n)) as the

cohomology of the group G with coefficients in the module Hn−1(W
∗n) where the action

is induced, via the homomorphism, by the W action.
If we now denote by (E∗, d) a projective resolution of the trivial G−module Z, then the

homomorphism ρ∗ induces a map of chain complexes ρ∗ : E∗(n) −→ C∗(n), which induces
the map of complexes ρ∗ : HomW (C∗, Hn−1(W

∗n)) → HomW (E∗, Hn−1(W
∗n)) and the

map ρ∗ : H∗(W, M) −→ H∗(G, M), in cohomology.
We may summarize the various ingredients introduced:
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Theorem 2.2. Let G and W be two groups, with W finite. Let A → BG be a Galois
covering with fiber W and denote by ρ∗ : G → W the corresponding homomorphism.
Assume dim BG ≤ n. The following statements are equivalent:

1) The genus of the covering A → BG is less than or equal to n.
2) The fibration W ∗k ×W A −→ B has a section.
3) The classifying map of the covering A factors through the n − 1 dimensional space

W ∗n/W .
4) For every W module M the map in cohomology ρ∗ : Hn(W, M) → Hn(G, M) is 0.
5) The cohomology class of ρ∗[∂n] is 0.

Proof. By the Proposition 1.2, 1) and 2) are equivalent. 2) implies 3) by Corollary 1.4.
3) clearly implies 4) and also 4) clearly implies 5). Finally 5) implies 2) by Theorem

2.1. �

3 Braid and symmetric groups

We apply now the previous theory to G = Bn+1, W = Sn+1 and to the canonical
quotient homomorphism Bn+1 → Sn+1, so that the fibration we get is, up to homotopy,
the fibration πn+1 : Cn+1 − ∆ → Pn+1, considered in the introduction.

In this case Pn+1 can be replaced by a finite CW-complex of dimension n and we will use
the very explicit constructions given in ([Sa], [DS]). To say that [c] = 0 where c = ρ∗[∂n]
means that the cocycle ∂n restricted to En is a coboundary, or in other words that there
exists a map g : En−1 → ∂Cn such that the diagram:

En
∂

−−−−→ En−1

ρn





y

g





y

Cn
∂n−−−−→ ∂Cn

commutes.
All the maps are linear with respect to the group algebra S of the braid group, so it is

convenient to reformulate this statement as follows. Let R be the integral group algebra
of the symmetric group and define D∗ := E∗ ⊗S R, then D∗ is a subcomplex of C∗ and
denoting by i its inclusion the diagram becomes by abuse of notations:

Dn
∂

−−−−→ Dn−1

i





y

g





y

Cn
∂n−−−−→ ∂Cn

where now all the modules are free R modules and the maps R−linear.
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Recall from [DS] that Dn = Re, Dn−1 = ⊕n
k=1Rek, ∂e =

∑

k Akek with the Ak’s
defined as follows. For each 1 ≤ k ≤ n set

Ak := {(i1, i2, . . . , in+1) ∈ Sn+1| i1 < i2 · · · < ik−1 < ik; ik+1 < ik+2 · · · < in < in+1}

Then
Ak =

∑

σ∈Ak

ε(σ)σ,

ε(σ) is the sign.

Therefore:

Lemma 3.1. The map g exists if and only if there exist elements xk ∈ ∂Cn with
∑

k Akxk =
∑

k Akek.

Proof. A map g : Dn−1 → ∂Cn is completely determined by the values xk = g(ek) and,
since Dn is generated by e the equality g ◦ ∂ = a ◦ i is equivalent to g ◦ ∂(e) = ∂n ◦ i(e) or
∑

k Akxk =
∑

k Akek. �

We can further reformulate the last statement as follows.

By definition, given xk ∈ ∂Cn there exists yk ∈ Cn such that xk = ∂yk so that the map
g exists if and only if there exist elements yk ∈ Cn with

∑

k Ak∂yk =
∑

k Akek = ∂e, or
∂(e −

∑

k Akyk) = 0. Again by exactness of C∗ this means that there exists an element
b ∈ Cn+1 with ∂(b) = e −

∑

k Akyk.

Finally this can be reinterpreted as follows. Let I =
∑

k AkR be the right ideal in R
generated by the elements Ak. On the category of R modules define the functor

N → T (N) := N/
∑

k

AkN = R/I ⊗R N.

Take the complex T (C∗) = R/I ⊗R C∗ whose homology is H∗(Sn+1, R/I).
By construction, the element e ∈ T (Dn) ⊂ T (Cn), class of e, is a cycle and so it gives a

homology class [e] ∈ Hn(T (D∗)). Denoting by j the inclusion of T (Dn) into T (Cn), take
j[e] ∈ Hn(Sn+1, R/I). We can thus interpret the previous discussion as:

Theorem 3.2. ρ∗[∂n] is a coboundary if and only if j[e] = 0.

Notice now that the exact sequence 0 → D∗ → C∗ → C∗/D∗ → 0 of complexes of free
R modules induces an exact sequence 0 → T (D∗) → T (C∗) → T (C∗/D∗) → 0. From

the long exact sequence of homology Hn+1(T (C∗/D∗))
∂
−→ Hn(T (D∗))

j
−→ Hn(T (C∗)) . . . .

Therefore j[e] = 0 if and only if [e] = ∂(u), u ∈ Hn+1(T (C∗/D∗)).

Since Dn+1 = 0 we have that Hn(T (D∗)) are the cycles of the map T (Dn)
d
−→ T (Dn−1)

and most of the computational difficulty lies in computing Hn+1(T (C∗/D∗)). In the next
sections we will start to describe in more detail the module R/I and make a few simpli-
fications which will allow us at the end to reduce the computational complexity, in case
n = 5 to a manageable size.
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4 The module R/I.

In order to continue we must deduce some properties of R/I and to describe algorith-
mically the complex T (C∗/D∗).

Theorem 4.1. We have a direct sum decomposition, as Sn modules, R = Z[Sn+1] =
I ⊕ Z[Sn].

Proof. First of all let us make the following remarks. By our description of the complex
D∗, we can identify Hn(D∗) = {r ∈ R|rAk = 0, ∀k}. Also from its very definition, the
complex D∗ computes the homology of the total space A := Cn+1 − ∆, of our fibration
and we get [O-S] that Hn(D∗) is a free Z module of rank n!.

Let us now use the (integral) trace form t(a) := 1
n!Tr(aL) associated to the regular

representation, aL : Z[Sn+1] → Z[Sn+1], aL(u) := au. This is non degenerate over Z.

Under this form given r ∈ R:

r ∈ Hn(D∗), ⇐⇒ 0 = t(xrAk) = t(rAkx) ∀k,

thus Hn(D∗) is the orthogonal, under the form t(ab), to the right ideal I =
∑n

k=1 AkZ[Sn+1].

Since rkHn(D∗) = n!, rkR/I = n!. Therefore in order to prove our claim, it suffices to
show that Z[Sn+1] = I+Z[Sn]. Given a permutation σ ∈ Sn+1, consider k := n+1−σ(n+1).
If k = 0, we have nothing to show since σ ∈ Sn. Otherwise we proceed by induction on k.

Given a permutation τ = (i1, i2, . . . , in+1) ∈ Ak we clearly have that in+1 ≥ n + 1 − k.
Furthermore, if in+1 = n + 1 − k, we must necessarily have that

τ = (n + 1 − (k − 1), . . . , n + 1, 1, 2, 3, . . . , n − k, n + 1 − k).

Thus, we can write τ = (−1)k(n+1−k)Ak + b, with b a linear combination of permutations
γ for which n+1−γ(n+1) < k. Our inductive hypothesis then implies that τ ∈ I +Z[Sn].

Take now an arbitrary permutation σ with σ(n + 1) = n + 1 − k. We can write
σ = τγ, γ ∈ Sn. Since I + Z[Sn], is clearly stable under right multiplication by elements
in Sn, everything follows. �

Remark We have that, R/I as a Z[Sn]-module is free of rank 1.
Thus Hi(Sn, R/I) = 0, ∀i > 0. Since n + 1 = [Sn+1 : Sn], multiplication by n + 1 on

Hi(Sn+1, R/I) can be written as the composition of the restriction and corestriction

n + 1 : Hi(Sn+1, R/I)
res
−−→ Hi(Sn, R/I)

cores
−−−→ Hi(Sn+1, R/I),

we deduce that (n + 1)Hi(Sn+1, R/I) = 0, ∀i > 0 (cf. [B], Prop. 9.5).

The previous discussion gives an explicit algorithm to perform the projection:

(Pr) Z[Sn+1] = Z[Sn] ⊕ I
π
−→ Z[Sn].
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With this explicit map the computation of the complex R/I ⊗R C∗ can be developed.

5 The complex.

In [DS] one describes a free resolution C∗ of Z by R modules. Denote by N the set of
n nodes of An which we identify with the set of simple transpositions (h, h + 1) and we
order linearly. Let Bk denote the set of flags of k subsets of N with a total of k elements,
i.e. sequences b := Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γk ⊇ N , such that

∑

|Γi| = k .
Then Ck is a direct sum ⊕b∈Bk

Z[Sn+1]eb and the differential ∂eb is explicitly de-

scribed as follows. Let SΓi
the parabolic subgroup generated by Γi and S

Γi\{τ}
Γi

the coset
representatives of shortest length of Γi \ {τ} in Γi. Define a Z[Sn+1]-linear differential
∂k : Ck → Ck−1 by

∂k eb =
∑

1≤i≤k
|Γi|>|Γi+1|

∑

τ∈Γi

∑

β∈S
Γi\{τ}

Γi

β−1Γi+1β ⊂ Γi\{τ}

(−1)α(Γ,i,τ,β) βeb′

where b′ = (Γ1, . . . , Γi−1, Γi \ {τ}, β−1Γi+1β, . . . , β−1Γkβ) and

α(Γ, i, τ, β) = i`(β) +

i−1
∑

j=1

|Γj| + µ(Γi, τ) +

d
∑

j=i+1

σ(β, Γj).

Here ` is the standard length function, σ(β, Γj) is the number of inversions in the map
Γj → β−1Γjβ ⊂ Γi \ τ and µ(Γi, τ) is the number of reflections in Γi which are less than
or equal to τ in the linear ordering.

Using the decomposition and projection (Pr) we identify R/I⊗RCk with ⊕b∈Bk
Z[Sn]eb.

As for the boundary, Z[Sn+1] = Z[Sn] ⊕ I
π
−→ Z[Sn] induces termwise a map

⊕b∈Bk
Z[Sn+1]eb = ⊕b∈Bk

(Z[Sn] ⊕ I)eb
π
−→ ⊕b∈Bk

Z[Sn]eb.

So the boundary in R/I ⊗R C∗ is the composition:

(Co) ∆k : ⊕b∈Bk
Z[Sn]eb

∂
−→ ⊕c∈Bk−1

(Z[Sn] ⊕ I)ec
π
−→ ⊕c∈Bk−1

Z[Sn]ec.

Further simplification comes from the following remark.

Proposition 5.1. Let Bh
k ⊂ Bk denote the set of flags of subsets of {1, . . . , ĥ, . . . , n}

with cardinality k. Then the two subcomplexes C∗(1), C∗(n) of R/I ⊗R C∗ which are
generated respectively by

⊕b∈B1
k

R/I eb, ⊕b∈Bn

k
R/I eb
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are acyclic.
The same statement is true in degree ≥ 2 for the subcomplex given by their sum.

Proof. From formulas of [DS] the subcomplex C∗(n) which is generated by

⊕b∈Bn

k
Z[Sn]eb

equals the acyclic complex Cn−1
∗ of Sn. Clearly the theory is symmetric, so the same is

true for the other subcomplex.
Now we see that the intersection C∗(1) ∩ C∗(n) is a subcomplex of free Z[Sn]-modules

with bases corresponding to flags with no nodes 1, n. Again from formulas in [DS] it is
clear that this subcomplex splits (in degree > 0) as a sum of n copies of the acyclic
complex Cn−2

∗ of the group Sn−1. Therefore by looking at the Mayer-Vietoris sequence
one concludes. �

So we reduce to make computations on the quotient

C̃∗ := R/I ⊗R C∗/(C∗(1) + C∗(n))

which is a complex of free Z[Sn]−modules with bases eb, where the flag b contains both 1

and n. Let ∂̃ be the boundary induced by ∂.
Theorem 3.2 translates here to

Theorem 5.2. Let b0 ∈ Bn be the flag

b0 := ({1, . . . , n} ⊃ ∅ ⊃ . . . ).

The class [∂n] is 0 iff eb0 belongs to the image of ∂̃n+1.

6 Computations.

Recall from Section 3 that the vanishing of the obstruction class [∂n] is equivalent to
that of a certain homology class j(e) ∈ Hn(Sn+1, R/I).

We want to compute Hi(S6, R/I) and show that H5(S6, R/I) = 0.
As above, identify R/I with Z[Sn] as Z[Sn]-modules.
The projection π : Z[Sn+1] → Z[Sn] is given by a matrix

P ∈ M(n! × (n + 1)!; Z)

which, can be determined following the algorithm described in the proof of Theorem 4.1.
More precisely, let us give an ordering σ1, σ2, . . . to the n + 1! permutations so that

the last n! of them fix n + 1. Then each element in Z[Sn+1] correspond to an integral
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vector with n + 1! entries. Construct the (n + 1)!× (n · (n + 1)!) integral matrix A whose
columns are the Akσj , k = 1, . . . , n, j = 1, . . . , (n + 1)!. Decompose A as

A =

[

B
C

]

where B is of order (n · n!) × (n · (n + 1)!) while C is of order (n!) × (n · (n + 1)!). Then
Theorem 4.1 is equivalent to

Theorem 6.1. B is right invertible over Z, i.e. there is an integral matrix H with
BH = In n!.

There exists a unique projection π : Z[Sn+1] → Z[Sn] given by the matrix

P = [−CH In! ]

where we indicate by In! the identity matrix of order n!, with:

[−CH In! ]

[

B
C

]

= 0

Computationally, one can find CH by (integral) Gauss reduction of AT .
We calculate (once for all) the matrix P. We also have algorithms which compute the

boundary ∂eb and, plugging into the formula (Co) we compute the integral matrix ∆k.

7 The case n = 5.

We now consider the case n = 5 and compute g(6) = g(π6).
We know by the general dimension argument that g(6) ≤ 6, on the other hand the

covering π6 contains a subcovering homeomorphic to π5 (by considering the polynomials
with one given fixed root), therefore from the results of Vassiliev g(6) ≥ 5, In order to
determine whether g(6) = 6 or g(6) = 5 we have to compute the obstruction class.

Lemma 7.1. For n = 5 the ranks of the free Z[S6]-modules C∗, resp. the free Z[S5]-

modules C̃∗, in dimensions i : 0, 1, 2, 3, 4, 5, 6 are:

rk(Ci) = 1, 5, 15, 35, 70, 126, 210,

rk(C̃i) = 0, 0, 1, 5, 15, 35, 70.
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Proof. We just enumerate all flags with given cardinality, and those which contain both
1 and 5. �

Now what we do is the following:

1) By using the general algorithm which produces the boundaries in C∗, with coefficients
in Z[S6], we compute the (35 × 70)−submatrix (with values in Z[S6]) of the boundary ∂6

which corresponds to those flags containing both 1 and 5.

2) We multiply each column (on the left) by σ ∈ S5 and transform that 35-vector over
Z[S6] into a (35 × 120)−vector over Z by using the projection matrix P.

So we obtain a (35 × 120 = 4200) × (70 × 120 = 8400)−matrix which represents the

boundary ∂̃6 as Z−modules.

3) We find the (Smith) normal form of such a matrix.

By general results ([B]) all homology groups are finite in positive dimension, in our case

by the Remark of section 4, the number 6 kills homology. From the normal form of ∂̃6 one
soon has H5(C̃∗) which equals H5(S6, R/I) by proposition 5.1. By repeating the previous
steps in lower dimension we find:

Theorem 7.2. The homology Hi(S6; R/I) is for i = 0, . . . , 5

Hi(S6; R/I) : Z/3Z, 0, 0, 0, Z/3Z, 0.

Proof. The cases Hk(S6; R/I) with k ≤ 2 are computed directly. For the remaining ones

we make computations using C̃∗ as said above, the computations have been made with a
program written using the package AXIOM. �

Corollary 7.3. For n = 5 the induced map ρ∗ in cohomology vanishes.

We have thus the main Theorem:

Theorem 7.4. The genus g(6) = 5 so 5 holomorphic functions suffice to compute the
roots of a polynomial of degree 6.
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