8 research outputs found
Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model
BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2Â weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited
The MicroRNA-371 Family as Plasma Biomarkers for Monitoring Undifferentiated and Potentially Malignant Human Pluripotent Stem Cells in Teratoma Assays
Summary: Predicting developmental potency and risk of posttransplantation tumor formation by human pluripotent stem cells (hPSCs) and their derivatives largely rely on classical histological analysis of teratomas. Here, we investigated whether an assay based on microRNAs (miRNA) in blood plasma is able to detect potentially malignant elements. Several hPSCs and human malignant germ cell tumor (hGCT) lines were investigated in vitro and in vivo after mouse xenografting. The multiple conventional hPSC lines generated mature teratomas, while xenografts from induced hPSCs (hiPSCs) with reactivated reprogramming transgenes and hGCT lines contained undifferentiated and potentially malignant components. The presence of these elements was reflected in the mRNA and miRNA profiles of the xenografts with OCT3/4 mRNA and the miR-371 and miR-302 families readily detectable. miR-371 family members were also identified in mouse plasma faithfully reporting undifferentiated elements in the xenografts. This study demonstrated that undifferentiated and potentially malignant cells could be detected in vivo. : Salvatori et al. showed histological, mRNA, microRNA similarities between human germ cell tumors and xenografts derived from human pluripotent stem cells (hPSCs). miR-371, -302, and C19MC families were present in the blood plasma of mice after injection of hPSCs (teratoma assay) and were indicative of undifferentiated and potentially malignant cells in the growing xenograft. Keywords: teratoma, human pluripotent stem cells, malignant elements, embryonal carcinoma, human germ cell tumors, microRN
I kappa B Kinase Inhibitor Attenuates Sepsis-Induced Cardiac Dysfunction in CKD
Patients with CKD requiring dialysis have a higher risk of sepsis and a 100-fold higher mortality rate than the general population with sepsis. The severity of cardiac dysfunction predicts mortality in patients with sepsis. Here, we investigated the effect of preexisting CKD on cardiac function in mice with sepsis and whether inhibition of I\u3baB kinase (IKK) reduces the cardiac dysfunction in CKD sepsis. Male C57BL/6 mice underwent 5/6 nephrectomy, and 8 weeks later, they were subjected to LPS (2 mg/kg) or sepsis by cecal ligation and puncture (CLP). Compared with sham operation, nephrectomy resulted in significant increases in urea and creatinine levels, a small (P<0.05) reduction in ejection fraction (echocardiography), and increases in the cardiac levels of phosphorylated I\u3baB\u3b1, Akt, and extracellular signal-regulated kinase 1/2; nuclear translocation of the NF-\u3baB subunit p65; and inducible nitric oxide synthase (iNOS) expression. When subjected to LPS or CLP, compared with sham-operated controls, CKD mice exhibited exacerbation of cardiac dysfunction and lung inflammation, greater increases in levels of plasma cytokines (TNF-\u3b1, IL-1\u3b2, IL-6, and IL-10), and greater increases in the cardiac levels of phosphorylated IKK\u3b1/\u3b2 and I\u3baB\u3b1, nuclear translocation of p65, and iNOS expression. Treatment of CKD mice with an IKK inhibitor (IKK 16; 1 mg/kg) 1 hour after CLP or LPS administration attenuated these effects. Thus, preexisting CKD aggravates the cardiac dysfunction caused by sepsis or endotoxemia in mice; this effect may be caused by increased cardiac NF-\u3baB activation and iNOS expression
Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease
Orlova, Bellin, Mummery, and colleagues combined three hiPSC-derived cardiac cell types in 3D microtissues. Cardiomyocytes matured structurally and functionally. Replacing healthy hiPSC-cardiac fibroblasts with patient fibroblasts recapitulated aspects of arrhythmogenic cardiomyopathy. Single-cell transcriptomics, electrophysiology, metabolomics, and ultrastructural analysis revealed roles for CX43 gap junctions and cAMP signaling in the tri-cell-type dialog
Donor T Cells Administered Over HLA Class II Barriers Mediate Antitumor Immunity without Broad Off-Target Toxicity in a NOD/Scid Mouse Model of Acute Leukemia
Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease