5 research outputs found
Obtenció de capes primes d'alúmina mitjançant "Atomic Layer Deposition"
En aquest projecte s'ha estudiat la posada a punt d'un equip comercial ALD per a l'obtenció de capes primes d'alúmina a escala nanomètrica utilitzant vapor d'aigua i TMA com a precursors. Per tal de comprovar a bondat de les receptes experimentals aportades pel fabricant així com comprovar alguns aspectes de la teoria ALD s'han realitzat una sèrie de mostres variant els diferents paràmetres experimentals, principalment la temperatura de deposició, el nombre de cicles, la durada del cicle i el tipus de substrat. Per a la determinació dels gruixos nanomètrics de les capes i per tant dels ritmes de creixement s'ha utilitzat la el·lipsometria, una de les poques tècniques no destructives capaç de mesurar amb gran precisió gruixos de capes o interfases de pocs àngstroms o nanòmetres. En una primera etapa s'han utilitzat els valors experimentals donats pel fabricant del sistema ALD per determinar el ritme de creixement en funció de la temperatura de dipòsit i del numero de cicles, en ambdós casos sobre diversos substrats. S'ha demostrat que el ritme de creixement augmenta lleugerament en augmentar la temperatura de dipòsit, tot i que amb una variació petita, de l'ordre del 12% en variar 70ºC la temperatura de deposició. Així mateix s'ha demostrat la linealitat del gruix amb el número de cicles, tot i que no s'observa una proporcionalitat exacta. En una segona etapa s'han optimitzat els paràmetres experimentals, bàsicament els temps de purga entre pols i pols per tal de reduir considerablement les durades dels experiments realitzats a relativament baixes temperatures. En aquest cas s'ha comprovat que es mantenien els ritmes de creixement amb una diferencia del 3,6%, 4,8% i 5,5% en optimitzar el cicles en 6,65h, 8,31h, o 8,33h, respectivament. A més, per una d'aquestes condicions s'ha demostrat que es mantenia l'alta conformitat de les capes d'alúmina. A més, s'ha realitzat un estudi de l'homogeneïtat del gruix de les capes en tota la zona de dipòsit del reactor ALD. S'ha demostrat que la variació en gruix de les capes dipositades a 120ºC és com a màxim del 6,2% en una superfície de 110 cm2. Confirmant l'excepcional control de gruixos de la tècnica ALD
A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloy
Up to date, IN713C Nickel-based superalloy has been continued to be the best alloy candidate for turbocharger wheel applications due to its adequate fatigue property and resistance to degradation under harsh operating environments. Throughout this study, three different batches of as-cast IN713C nickel based superalloys with different microstructures including columnar, equiaxed and transition microstructures were investigated. Strain control Low Cycle fatigue (LCF) tests were conducted for the three different microstructures, achieving fatigue life between 100 and runout at 100,000 cycles, depending on the testing parameters. The fracture mechanics and failure mechanism were correlated to the alloy's microstructure, texture and chemical composition under various LCF conditions using optical microscopy, SEM, EDX and EBSD. In the current study an exact correlation between alloy's microstructure/microtexture and LCF endurance is established. The results showed that equiaxed microstructure has a superior fatigue life than the transition microstructure by 10% and columnar microstructure by > 200% at a given temperature and strain rate. This large discrepancy was mainly due to the grain size differences between the studied microstructures. Here, it was evidenced that the grain size controls the dendrites length. It is also demonstrated that all microstructures exhibited a longer fatigue life at room temperature than at 650 °C, doubling or tripling the fatigue life of the tested IN713C. Furthermore, the high presence of precipitates between dendritic arms in all three microstructures was found to have great influence on crack propagation path. It was apparent that segregated carbides in between dendritic arms caused secondary crack initiation and crack path undulations during the LCF tests
The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloy
Nickel-based superalloy IN713C produced through investment casting route is widely used for turbocharger turbine wheels in the automotive industry. The produced microstructure and microtexture are not homogeneous across the turbine component due to geometrical factors and localised cooling rate during the casting process, which give rise to inhomogeneous deformation during service. In the present paper, two kinds of in-house fatigue tests, Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF), were conducted at 600 °C in attempt to simulate the actual fatigue conditions experienced by turbine wheels in turbocharger. From Geometrically Necessary Dislocation (GND) distributions and strain analyses, it is concluded that microstructure heterogeneity such as carbide precipitates distribution within dendritic structure network determine the failure micromechanics during LCF tests. In the early stage of LCF loading, crack principally initiated within near surface carbides that have been oxidised during high temperature exposure. The higher GND density at the tip of carbide precipitates due to oxidation volume expansion are found to facilitate easy cracks initiation and propagation. Moreover, the cluster-like carbides network and its distribution can accelerate oxidation process and crack growth effectively. Furthermore, in the later stage of crack propagation during LCF, the weak interdendrite areas rotate to accommodate increased strain leading to faster cracks propagation and hence final catastrophic failure. Serial section technique for 3-D visualisation was employed to investigate the crystallographic grain orientation correlation with fracture mechanics during HCF loading. It appears that the microtexure and grain orientations are more critical than the alloy microstructure in an area with a relatively uniform carbides distribution and weak dendrite structure where HCF failure occurred. Based on the slip trace analysis, it was found that most faceting occurred in Goss grains (//LD) and on slip system with the highest Schmid factor. It is concluded that cracks were initiated on planes with high Schmid factors and assisted by the presence of porosity
The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloy
The polycrystalline IN713C produced via investment casting is one of the widely-used nickel-based superalloy in automotive and aerospace industries. This alloy, however, has an apparent inhomogeneous microstructure generated during casting and contains dendritic structure that gives rise to strain localisation during loading. Yet, the effect of dendritic structure, grain size and shape as well as crystallographic orientation, which directly influence fatigue property and deformation micromechanism in the components, is rarely studied. In the present study, IN713C cast bars are tailored with three different grain structures, i.e., transition, equiaxed and columnar, with substantial grain size variations. The produced bars were tested under strain controlled LCF (Low Cycle Fatigue) and stress controlled HCF (High Cycle Fatigue) conditions at 650 °C. The results showed that most of fatigue cracks initiated from casting pores and fatigue life extended in the microstructure with a small grain size during both HCF and LCF loadings. It is also demonstrated that fatigue striations were mainly observed within dendritic areas during crack propagation, whereas the higher GND (Geometrically Necessary Dislocation) density were predominantly observed in the interdendritic areas. Here, we propose a concept of ‘Crack Propagation Unit (CPU)’ for better description of deformation mechanism at local scale during fatigue loading by combining fracture surface characteristic methodology and dislocation distribution analyses within the dendritic structural unit. Furthermore, this model to understand the deformation micromechanism can provide a new perspective on the interpretation of Hall-Petch relationship in casting materials that contain dendritic structure. This is further demonstrated via direct correlation of the high crack propagation resistance with the crack path divergence instead of the dislocation pile-up at the grain boundary or in-between the γ/γ′ channels. Moreover, by utilising serial sectioning method followed by layered EBSD scanning, quasi-3-D grain orientation mappings were obtained, and crystallographic texture information were directly correlated with the fracture surface observations. This allowed an investigation of the influence of orientation of individual grains and micro/macro texture on crack propagation rate. The critical stage of crack propagation in fatigue life and its correlations with microstructural features is established, offering potential practical applications by controlling the investment casting process parameters
Obtenció de capes primes d'alúmina mitjançant "Atomic Layer Deposition"
En aquest projecte s'ha estudiat la posada a punt d’un equip comercial ALD per a l’obtenció de
capes primes d'alúmina a escala nanomètrica utilitzant vapor d’aigua i TMA com a precursors.
Per tal de comprovar a bondat de les receptes experimentals aportades pel fabricant així com
comprovar alguns aspectes de la teoria ALD s’han realitzat una sèrie de mostres variant els
diferents paràmetres experimentals, principalment la temperatura de deposició, el nombre de
cicles, la durada del cicle i el tipus de substrat. Per a la determinació dels gruixos nanomètrics de
les capes i per tant dels ritmes de creixement s’ha utilitzat la el·lipsometria, una de les poques
tècniques no destructives capaç de mesurar amb gran precisió gruixos de capes o interfases de
pocs àngstroms o nanòmetres.
En una primera etapa s'han utilitzat els valors experimentals donats pel fabricant del sistema ALD
per determinar el ritme de creixement en funció de la temperatura de dipòsit i del numero de
cicles, en ambdós casos sobre diversos substrats.
S'ha demostrat que el ritme de creixement augmenta lleugerament en augmentar la temperatura
de dipòsit, tot i que amb una variació petita, de l'ordre del 12% en variar 70ºC la temperatura de
deposició. Així mateix s'ha demostrat la linealitat del gruix amb el número de cicles, tot i que no
s’observa una proporcionalitat exacta.
En una segona etapa s'han optimitzat els paràmetres experimentals, bàsicament els temps de
purga entre pols i pols per tal de reduir considerablement les durades dels experiments realitzats a
relativament baixes temperatures. En aquest cas s’ha comprovat que es mantenien els ritmes de
creixement amb una diferencia del 3,6%, 4,8% i 5,5% en optimitzar el cicles en 6,65h, 8,31h, o
8,33h, respectivament. A més, per una d'aquestes condicions s’ha demostrat que es mantenia
l’alta conformitat de les capes d’alúmina.
A més, s'ha realitzat un estudi de l'homogeneïtat del gruix de les capes en tota la zona de dipòsit
del reactor ALD. S’ha demostrat que la variació en gruix de les capes dipositades a 120ºC és com a
màxim del 6,2% en una superfície de 110 cm2. Confirmant l’excepcional control de gruixos de la
tècnica ALD