5 research outputs found

    IoT-Based Multi-Dimensional Chaos Mapping System for Secure and Fast Transmission of Visual Data in Smart Cities

    Get PDF
    A “smart city” sends data from many sensors to a cloud server for local authorities and the public to connect. Smart city residents communicate mostly through images and videos. Many image security algorithms have been proposed to improve locals’ lives, but a high-class redundancy method with a small space requirement is still needed to acquire and protect this sensitive data. This paper proposes an IoT-based multi-dimensional chaos mapping system for secure and fast transmission of visual data in smart cities, which uses the five dimensional Gauss Sine Logistic system to generate hyper-chaotic sequences to encrypt images. The proposed method also uses pixel position permutation and Singular Value Decomposition with Discrete fractional cosine transform to compress and protect the sensitive image data. To increase security, we use a chaotic system to construct the chaotic sequences and a diffusion matrix. Furthermore, numerical simulation results and theoretical evaluations validate the suggested scheme’s security and efficacy after compression encryption.publishedVersio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    5D Gauss Map Perspective to Image Encryption with Transfer Learning Validation

    No full text
    Encryption of visual data is a requirement of the modern day. This is obvious and greatly required due to widespread use of digital communication mediums, their wide range of applications, and phishing activities. Chaos approaches have been shown to be extremely effective among many encryption methods. However, low-dimensional chaotic schemes are characterized by restricted system components and fundamental structures. As a result, chaotic signal estimation algorithms may be utilized to anticipate system properties and their initial values to breach the security. High-dimensional chaotic maps on the other hand, have exceptional chaotic behavior and complex structure because of increased number of system parameters. Therefore, to overcome the shortcomings of the lower order chaotic map, this paper proposes a 5D Gauss Map for image encryption for the first time. The work presented here is an expansion of the Gauss Map’s current 1D form. The performance of the stated work is evaluated using some of the most important metrics as well as the different attacks in the field. In addition to traditional and well-established metrics such as PSNR, MSE, SSIM, Information Entropy, NPCR, UACI, and Correlation Coefficient that have been used to validate encryption schemes, classification accuracy is also verified using transfer learning. The simulation was done on the MATLAB platform, and the classification accuracy after the encryption-decryption process is compared

    Quad Key-Secured 3D Gauss Encryption Compression System with Lyapunov Exponent Validation for Digital Images

    No full text
    High-dimensional systems are more secure than their lower-order counterparts. However, high security with these complex sets of equations and parameters reduces the transmission system’s processing speed, necessitating the development of an algorithm that secures and makes the system lightweight, ensuring that the processing speed is not compromised. This study provides a digital image compression–encryption technique based on the idea of a novel quad key-secured 3D Gauss chaotic map with singular value decomposition (SVD) and hybrid chaos, which employs SVD to compress the digital image and a four-key-protected encryption via a novel 3D Gauss map, logistic map, Arnold map, or sine map. The algorithm has three benefits: First, the compression method enables the user to select the appropriate compression level based on the application using a unique number. Second, it features a confusion method in which the image’s pixel coordinates are jumbled using four chaotic maps. The pixel position is randomized, resulting in a communication-safe cipher text image. Third, the four keys are produced using a novel 3D Gauss map, logistic map, Arnold map, or sine map, which are nonlinear and chaotic and, hence, very secure with greater key spaces (2498). Moreover, the novel 3D Gauss map satisfies the Lyapunov exponent distribution, which characterizes any chaotic system. As a result, the technique is extremely safe while simultaneously conserving storage space. The experimental findings demonstrate that the method provides reliable reconstruction with a good PSNR on various singular values. Moreover, the applied attacks demonstrated in the result section prove that the proposed method can firmly withstand the urge of attacks

    HDIEA: high dimensional color image encryption architecture using five-dimensional Gauss-logistic and Lorenz system

    No full text
    The work presented here is a high dimensional color image encryption architecture (HDIEA) founded on the Lorenz-Gauss-Logistic (LGL) encryption algorithm. The primary objective is to demonstrate that both the proposed novel five-dimensional (5D) Gauss-Logistic and four-dimensional (4D) Lorenz system are operating in a hyper-chaotic condition. The visual study of their most important characteristics, such as the sensitivity of the starting value of both maps and the Lyapunov exponent of the 5D Gauss Logistic map, is carried out. The Runge–Kutta technique is used to discretise the Lorenz system in order to construct a pseudo-random sequence generation for the control parameter that has a greater degree of randomness. The 5D Gauss-Logistic system is then selected to serve as the principal hyper-chaotic mapping scheme. The simulation results demonstrate that the suggested image encryption method is successful according to the NIST test and has powerful anti-attack, a larger key space as large as 2847, which is prone to multiple attacks, and key sensitivity capabilities. Also, the pixel correlation reached −0.0019, −0.0016, and −0.0069, while the information entropy was at 7.9996. This demonstrates the excellent scrambling effect of the proposed approach, which is capable of greatly improving the color image security performance
    corecore