319 research outputs found

    12C nuclear reaction measurements for hadrontherapy

    Get PDF
    International audienceHadrontherapy treatments require a very high precision on the dose deposition ( 2.5% and 1-2mm) in order to keep the benefits of the precise ions' ballistic. The largest uncertainty on the physical dose deposition is due to ion fragmentation. Up to now, the simulation codes are not able to reproduce the fragmentation process with the required precision. To constraint the nuclear models and complete fragmentation cross sections databases; our collaboration has performed an experiment on May 2008 at GANIL with a 95 MeV/u 12C beam. We have measured the fluence, energy and angular distributions of charged fragments and neutrons coming from nuclear reactions of incident 12C on thick water-like PMMA targets. Preliminary comparisons between GEANT4 (G4BinaryLightIonReaction) simulations and experimental data show huge discrepancies

    Transfer Reaction Studies with Spectrometers

    Get PDF
    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large gamma arrays. The recent results of gamma-particle coincident measurements in Ca-40+Zr-96 and Ar-40+Pb-208 reactions demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. The development of collectivity has been followed in odd Ar isotopes populated in the Ar-40+Pb-208 reaction through the excitation of the 11/2(-) states, understood as the coupling of single particle degrees of freedom to nuclear vibration quanta. Pair transfer modes is another important degree of freedom which is presently being studied with Prisma in inverse kinematics at energies far below the Coulomb barrier. First results from the Zr-96+Ca-40 reaction elucidate the role played by nucleon-nucleon correlation

    Nature and decay of a JπJ\pi=36+36^{+} resonance in the 24^{24}Mg + 24^{24}Mg reaction

    No full text
    It has been proposed to associate the narrow (\Gamma=170 keV) and high spin (JπJ\pi=36^+) resonance in the 24Mg + 24Mg reaction at E_c.m= 45.7 MeV with a hyperdeformed molecular state in 48Cr. Such a description has important consequences for the resonance decay into the favoured inelastic channels. Through fragment- coincidence measurements performed ON and OFF resonance using the PRISMA-CLARA array, we have established that the 24Mg states selectively populated are the 2^+ and 4^+ members of the ground state band

    Decay of a Jπ=36+J^{\pi}=36^+ Resonance in the 24Mg+24Mg^{24}Mg + ^{24}Mg Reaction

    No full text
    The narrow (Γ\Gamma=170 keV) and high spin (Jπ=36+J^{\pi}=36^+) resonance in the 24^{24}Mg + 24^{24}Mg reaction at ECM_{CM}= 45.7 MeV has been associated with a hyperdeformed molecular state in 48^{48}Cr. Such a description has important consequences for the resonance decay into the favored inelastic channels. Through fragment- γ\gamma coincidence measurements performed ON and OFF resonance using the PRISMA-CLARA array, we have identified the 24^{24}Mg states selectively populated: the 2+2^+ and 4+4^+ members of the ground state band

    Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis

    Get PDF
    TT8/bHLH042 is a key regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis thaliana. TT8 transcriptional activity has been studied extensively, and relies on its ability to form, with several R2R3-MYB and TTG1 (WD-Repeat protein), different MYB-bHLH-WDR (MBW) protein complexes. By contrast, little is known on how TT8 expression is itself regulated.Transcriptional regulation of TT8 expression was studied using molecular, genetic and biochemical approaches. Functional dissection of the TT8 promoter revealed its modular structure. Two modules were found to specifically drive TT8 promoter activity in PA- and anthocyanin-accumulating cells, by differentially integrating the signals issued from different regulators, in a spatio-temporal manner. Interestingly, this regulation involves at least six different MBW complexes, and an unpredicted positive feedback regulatory loop between TT8 and TTG2. Moreover, the results suggest that some putative new regulators remain to be discovered. Finally, specific cis-regulatory elements through which TT8 expression is regulated were identified and characterized. Together, these results provide a molecular model consistent with the specific and highly regulated expression of TT8. They shed new light into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation in Arabidopsis and other plant species

    Multinucleon transfer reactions in closed-shell nuclei

    Get PDF
    Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high resolution gamma-particle coincidence experiment. The large solid angle magnetic spectrometer PRISMA coupled to the CLARA gamma-array has been employed. Trajectory reconstruction has been applied for the complete identification of transfer products. Mass and charge yields, total kinetic energy losses, gamma transitions of the binary reaction partners, and comparison of data with semiclassical calculations are reported. Specific transitions in 95Zr populated in one particle transfer channels are discussed in terms of particle-phonon couplings. The gamma decays from states in 42Ca in the excitation energy region expected from pairing vibrations are also observed

    Intruder negative-parity states of neutron-rich Si33

    Get PDF
    Yrast states in the neutron-rich 1433Si19 nucleus have been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of S36 ions with a thin Pb208 target. An experimental setup that combines the large-acceptance magnetic spectrometer PRISMA and the high-efficiency γ-ray detection array CLARA was used in the experiment. Four new γ-ray photopeaks at energies of 971, 1724, 1772, and 2655 keV were observed and assigned to the Si33 level scheme. The experimental level scheme is compared with the results of 1ω p-sd-pf large-scale shell-model calculations using the recently developed PSDPFB effective interaction; good agreement is obtained. The structure of the populated states of Si33 is discussed within the context of an odd neutron coupled to states of the Si32 core. © 2010 The American Physical Society.This work was supported in part by the EPSRC (UK) and by the European Union under Contract No. RII3-CT-2004-506065. Five of us (D.O., M.B., A.H., K.K., and A.P.)acknowledge financial support from the EPSRC. Z.M.W acknowledges support from ORSAS and from the University of the West of Scotland. A.J. acknowledges financial supportfrom the Spanish Ministerio de Ciencia e Innovación under Contract Nos. FPA2007-66069 and FPA2009-13377-C02-02. Zs.D. acknowledges the financial support from OTKA Project No. K68801.Peer Reviewe

    First in-beam γ -ray study of the level structure of neutron-rich S 39

    Get PDF
    International audienceThe neutron-rich S39 nucleus has been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of S36 ions with a thin Pb208 target. The magnetic spectrometer, PRISMA, and the γ-ray array, CLARA, were used in the measurements. Gamma-ray transitions of the following energies were observed: 339, 398, 466, 705, 1517, 1656, and 1724 keV. Five of the observed transitions have been tentatively assigned to the decay of excited states with spins up to (11/2−). The results of a state-of-the-art shell-model calculation of the level scheme of S39 using the SDPF-U effective interaction are also presented. The systematic behavior of the excitation energy of the first 11/2− states in the odd-A isotopes of sulfur and argon is discussed in relation to the excitation energy of the first excited 2+ states of the adjacent even-A isotopes. The states of S39 that have the components in their wave functions corresponding to three neutrons in the 1f7/2 orbital outside the N=20 core have also been discussed within the context of the 0 ℏω shell-model calculations presented here
    corecore