778 research outputs found

    Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    Get PDF
    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 ±\pm 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].Comment: accepted for publication in NIM

    Transport Coefficients of the Yukawa One Component Plasma

    Full text link
    We present equilibrium molecular-dynamics computations of the thermal conductivity and the two viscosities of the Yukawa one-component plasma. The simulations were performed within periodic boundary conditions and Ewald sums were implemented for the potentials, the forces, and for all the currents which enter the Kubo formulas. For large values of the screening parameter, our estimates of the shear viscosity and the thermal conductivity are in good agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure

    Micromegas in a Bulk

    Full text link
    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicineComment: 6 pages, 4 figure

    Pattern of Reaction Diffusion Front in Laminar Flows

    Get PDF
    Autocatalytic reaction between reacted and unreacted species may propagate as solitary waves, namely at a constant front velocity and with a stationary concentration profile, resulting from a balance between molecular diffusion and chemical reaction. The effect of advective flow on the autocatalytic reaction between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is analyzed experimentally and numerically using lattice BGK simulations. We do observe the existence of solitary waves with concentration profiles exhibiting a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations in different geometries which test the theory of Boyd Edwards on flow advection of chemical reaction front which just appears in PRL (PRL Vol 89,104501, sept2002

    Progress on a spherical TPC for low energy neutrino detection

    Full text link
    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the fist 1 m3^3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others.Comment: 3 pages, talk given at the 9th Workshop on Topics in Astroparticle and Underground Physics, Zaragoza, September 10-1

    Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems

    Full text link
    Yukawa potentials are often used as effective potentials for systems as colloids, plasmas, etc. When the Debye screening length is large, the Yukawa potential tends to the non-screened Coulomb potential ; in this small screening limit, or Coulomb limit, the potential is long ranged. As it is well known in computer simulation, a simple truncation of the long ranged potential and the minimum image convention are insufficient to obtain accurate numerical data on systems. The Ewald method for bulk systems, i.e. with periodic boundary conditions in all three directions of the space, has already been derived for Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996) and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459, (2000)], but for systems with partial periodic boundary conditions, the Ewald sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf 126}, 056101 (2007)]. In this paper, we provide a closed derivation of the Ewald sums for Yukawa potentials in systems with periodic boundary conditions in only two directions and for any value of the Debye length. A special attention is paid to the Coulomb limit and its relation with the electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table

    Wave Number of Maximal Growth in Viscous Magnetic Fluids of Arbitrary Depth

    Get PDF
    An analytical method within the frame of linear stability theory is presented for the normal field instability in magnetic fluids. It allows to calculate the maximal growth rate and the corresponding wave number for any combination of thickness and viscosity of the fluid. Applying this method to magnetic fluids of finite depth, these results are quantitatively compared to the wave number of the transient pattern observed experimentally after a jump--like increase of the field. The wave number grows linearly with increasing induction where the theoretical and the experimental data agree well. Thereby a long-standing controversy about the behaviour of the wave number above the critical magnetic field is tackled.Comment: 19 pages, 15 figures, RevTex; revised version with a new figure and references added. submitted to Phys Rev

    DEMOCRATIC TRANSITION AND REFLECTION ON INDONESIA'S EFFORTS TO ENCOURAGE DEMOCRATIZATION IN MYANMAR

    Get PDF
    This paper aims to analyze the motives and forms of Indonesia’s effort towards Myanmar in promoting democratization. To achieve these objectives, described the historical aspects of Indonesia-Myanmar relations, democratic transition in both countries, and other forms of Indonesian support for Myanmar in encouraging democratization. Qualitative methods is used in this study to collect and analyze data from interviews and literature studies. Based on this research, found that Indonesia's support for Myanmar in encouraging democratization was influenced by the historical aspects of bilateral relations between Indonesia and Myanmar, the success of Indonesia's transition to democracy, and the similarities of socio-cultural characteristics in both countries. Indonesia's foreign policy towards Myanmar in supporting democratization is done bilaterally, regionally within ASEAN, and multilaterally within UN forums. The principle of active and independent foreign policy and ASEAN norms become the guidance for Indonesia in supporting democratization of Myanmar

    Differences in mitochondrial efficiency explain individual variation in growth performance

    Get PDF
    The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance
    corecore