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ABSTRACT  18 

The physiological causes of intraspecific differences in fitness components such as growth rate are 19 

currently a source of debate. It has been suggested that differences in energy metabolism may drive 20 

variation in growth, but it remains unclear whether covariation between growth rates and energy 21 

metabolism is (i) a result of certain individuals acquiring and consequently allocating more resources 22 

to growth, and/or is (ii) determined by variation in the efficiency with which those resources are 23 

transformed into growth. Studies of individually-housed animals under standardized nutritional 24 

conditions can help shed light on this debate. Here we quantify individual variation in metabolic 25 

efficiency in terms of the amount of ATP generated per molecule of oxygen consumed by liver and 26 

muscle mitochondria, and examine its effects both on the rate of protein synthesis within these 27 

tissues and on the rate of whole-body growth of individually-fed juvenile brown trout (Salmo trutta) 28 

receiving either a high or low food ration. As expected, fish on the high ration on average gained 29 

more in body mass and protein content than those maintained on the low ration. Yet, growth 30 

performance varied more than 10-fold amongst individuals on the same ration, resulting in some fish 31 

on low rations growing faster than others on the high ration. This variation in growth for a given 32 

ration was related to individual differences in mitochondrial properties: a high whole-body growth 33 

performance was associated with high mitochondrial efficiency of ATP production in the liver. Our 34 

results show for the first time that among-individual variation in the efficiency with which substrates 35 

are converted into ATP can help explain marked variation in growth performance, independent of 36 

food intake. This study highlights the existence of inter-individual differences in mitochondrial 37 

efficiency and its potential importance in explaining intraspecific variation in whole animal 38 

performance.   39 



INTRODUCTION 40 

Individual animals may grow at widely differing rates despite living under the same conditions - a 41 

finding that has been documented across a broad range of taxa (reviewed in [1, 2]). This 42 

phenomenon is often interpreted in terms of variation in individual quality. For instance, individuals 43 

that grow faster typically reach maturity more quickly and can have higher fecundity than slower 44 

growing individuals, suggesting direct fitness consequences of growth rate [3, 4]. However, the 45 

physiological processes underlying this among-individual variation in growth rate are currently poorly 46 

understood. 47 

Faster growth can obviously be achieved by increasing food intake. Individuals with high rate of food 48 

intake grow faster compared to individuals that have lower rate of resource intake, because high 49 

amounts of food intake can lead to increased rate of resource allocation to energetically costly 50 

processes, such as biomass production and, in turn, growth. However, variation in growth rate may 51 

persist even when food intake is standardised. For example, individual fish fed to satiation and 52 

consuming similar amount of food exhibited three-fold differences in growth performance [5]. 53 

Similarly, five-fold differences in the rate of growth have been shown amongst fish consuming an 54 

identical amount of food [6]. This suggests that variation in growth may be, at least partly, attributed 55 

to variation in the efficiency of resource utilization and its allocation to biomass production. Yet 56 

surprisingly little research has investigated the possible mechanisms that might underlie this 57 

variation in metabolic efficiency and thus growth performance [7]. 58 

Variation in the efficiency with which food is converted to energy is thought to play an important role 59 

in the association between food intake and animal growth [7-9]. Energy derived from nutrients 60 

becomes usable for cellular processes only following transformation into high-energy molecules of 61 

adenosine triphosphate (ATP). ATP is the principal energy source for most cellular functions, such as 62 

DNA, RNA and protein synthesis (and hence biomass production). The main sites of energy 63 

conversion are the mitochondria, which provide over 90% of a cell’s ATP [10]. Mitochondrial ATP is 64 

produced via oxidative phosphorylation, a process through which energy substrates are oxidized to 65 

generate a proton gradient that drives the phosphorylation of ADP to ATP. Although ATP production 66 

depends on the rate of substrate oxidation, the number of ATP molecules produced for each 67 

molecule of oxygen and energy substrate (i.e. pyruvate, glutamate, acetyl-CoA, etc) consumed by the 68 

mitochondria can vary [11]. A proportion of the energy that is generated from substrate oxidation is 69 

dissipated through proton leakage across the inner mitochondrial membrane and this leakage might 70 

decrease the energy available to produce ATP [12]. The amount of energy dissipated in the 71 

mitochondrial proton leak varies amongst individuals [13, 14] and this variation is known to correlate 72 

with animal performance [15, 16]. This raises the possibility that variation in growth among 73 

individuals could involve differences in the efficiency through which mitochondria produce ATP.  74 



Mitochondrial efficiency can be quantified through measurement of the ATP/O ratio; that is the ratio 75 

in the amount of ATP generated per unit of oxygen consumed [17]. Thus, the higher this ratio, the 76 

more efficiently an animal converts its metabolic substrates into ATP, with the ATP then available for 77 

energy-demanding cellular processes such as protein synthesis and biomass production [18]. A 78 

number of studies have found positive links between mean growth rate and mean mitochondrial 79 

efficiency when comparing among treatment groups, populations or selection lines [9, 19-23], but 80 

until now there has been no assessment of whether mitochondrial efficiency could explain variation 81 

in growth rate amongst individual animals maintained with the same food intake.  82 

In this study, we tested, for the first time, whether individual variation in growth performance – 83 

measured both as the rate of whole-body gain in mass and as the rate of protein synthesis - was 84 

related to among-individual variation in mitochondrial efficiency. To test this hypothesis, we 85 

assessed the relationships between ATP/O ratio, fractional rate of protein synthesis and growth 86 

performance (growth rate, growth efficiency and protein gain) among individually housed brown 87 

trout (Salmo trutta) of the same age and maintained under standardized conditions. In order to 88 

standardize their food intake, fish were fed on individual limited rations to ensure that differences in 89 

growth performance could be attributed to mitochondrial efficiency differences. We chose juvenile 90 

brown trout as our study organism because larger body size in brown trout is a major determinant of 91 

fitness, with fast growth resulting in increased survival [24] and larger body size being linked to 92 

higher fecundity [25]. We analysed mitochondrial properties and protein synthesis in the liver and 93 

the white muscle, since the physiological properties of these tissues are known to influence growth 94 

performance [16, 26]. We predicted positive inter-individual correlations among mitochondrial 95 

efficiency, protein synthesis and growth performance.  96 

 97 

 98 

MATERIALS AND METHODS 99 

Experimental animals 100 

Brown trout fry were moved from the hatchery (Howietoun, UK) to the University of Glasgow in June 101 

2015. The fish were then kept in a communal tank and maintained under a 12 h light: 12 h dark 102 

photoperiod at 12˚C and fed daily in excess with trout pellet food (EWOS, West Lothian, UK). In 103 

September 2016, fish (n = 60) were transferred to individual compartments within a stream tank 104 

system that allowed individual daily feeding while maintaining fish under the same water quality 105 

conditions. Each individual compartment contained a small shelter (a section of opaque plastic pipe).  106 

The fish were first acclimated for two weeks in their individual compartments, during which they 107 

were hand-fed daily to excess on the same trout pellets. Fish were then fasted for 22h and briefly 108 



anesthetized (50 ml l-1 benzocaine in water) for measurement of body mass (± 0.001 g) to allow 109 

calculation of caloric intake and thereby food rations (as number of pellets). For the next 5-10 weeks 110 

(see below) the fish were fed once daily on an intermediate ration of pellets (presumed sufficient for 111 

growth but less than a maximal rate of intake) using an equation from Elliott [27]; this allowed 112 

calculation of individual-specific rations in calories as a function of the fish’s body mass (W) in grams 113 

and water temperature (T) of 12˚C as follows:  114 

Intermediate ration = 24.062 x W0.737 x exp (0.105 x T) 115 

Fish were fed their ration in the early morning; all fish consumed their entire daily ration within 2 h. 116 

Body mass was measured every two weeks, and food rations were recalculated to adjust for gains in 117 

mass. Fish were fasted for 22h before each body mass measurement, and on return to their 118 

compartment were fed 2 h later than usual to allow time to recover from the anaesthetic and to 119 

ensure they ate the ration. All fish consumed their entire daily ration and gained mass during this 120 

acclimation period. 121 

 122 

Diet treatment and growth measurements 123 

Following this period of acclimation to an intermediate diet, fish were switched to the final diet 124 

treatment for 14 days. This duration was chosen because it limited the extent of mitochondrial turn-125 

over that would occur over the growth period but was sufficient to detect differences in the rate of 126 

growth between individuals [28]. Since only two individuals per day could be analysed for their 127 

mitochondrial function at the end of the experiment, the start of the diet treatment was staggered 128 

over a 5-week period (so that the preceding acclimation period varied between 5 to 10 weeks). Two 129 

fish per day (which would subsequently be processed together 14 days later) were thus randomly 130 

allocated to the treatments: one fish had its ration increased to 150% of the intermediate ration 131 

(high ration, n = 30) and the other had its ration decreased to 50% of the intermediate ration (low 132 

ration, n = 30). The low ration was estimated to provide sufficient energy to cover maintenance 133 

requirements and relatively slow growth [27], while the high ration approximated the maximal rate 134 

of food intake of juvenile brown trout [27]. Body mass ranged from 3.61 to 15.48 g across individuals 135 

at the start of the experiment but did not differ between fish subsequently assigned to the two food 136 

treatments (High ration: 8.15 ± 0.49 g, Low ration: 8.18 ± 0.48 g, T test: t = -0.041, df = 58, P = 0.967). 137 

Body mass was re-measured (as above) at day 7 of the diet treatment, and rations were recalculated 138 

to adjust for growth. All but one fish consumed their entire daily ration within 2 h during the 139 

experimental period; this fish was removed from all analyses so giving a final sample size of 59 fish 140 

(High food: n = 29; Low food: n = 30).   141 



Growth rate and growth efficiency were simultaneously estimated over a 7-day period starting at day 142 

7 of the experimental treatment (termed the initial fish mass in the following equation) and ending 143 

at day 14 (final fish mass). Specific growth rate (% day-1) was defined as: 144 

Specific growth rate = 
ln (final body mass) -  ln (initial body mass)

days elapsed
X 100 145 

Daily food intake was calculated from the daily food ration, and was expressed in terms of pellet 146 

mass. Growth efficiency (mg gain in body mass mg-1 food eaten) was measured for each fish as: 147 

Growth efficiency = 
gain in body mass day-1

mass of pellets eaten day-1 148 

At the end of the food treatment period, fractional rates of protein synthesis and mitochondrial 149 

properties were measured in the fish following protocols described below. 150 

 151 

Estimate of gain in whole-body protein  152 

The relationship between whole-body protein content and body mass of fish reared under 153 

Intermediate, Low and High rations was used to estimate the protein content of each fish at the start 154 

and at the end of the diet treatment and thereby estimate the gain in protein content over the 155 

treatment period. Specifically, we first determined the relationship between the body mass of a fish 156 

and its whole-body protein content (Figure S1), using a separate group of brown trout of the same 157 

age and size (See electronic supplementary material – ESM - for full details in section “Whole-body 158 

protein content”).  159 

The initial whole-body protein content of each experimental fish was therefore estimated from its 160 

body mass at the start of the food treatment, using the calibration regression for fish on the 161 

intermediate ration. The final whole body protein content of each experimental fish was likewise 162 

estimated from its body mass at the end of the food treatment, using the appropriate equation for 163 

its diet treatment. Specific protein gain rate (% day-1) was then defined as: 164 

Specific protein gain = 
ln (final whole-body protein content ) -  ln (initial whole-body protein content )

days elapsed
∗ 100 165 

 166 

Measurement of the fractional rate of protein synthesis 167 

The percentage of the protein mass synthesized per day – the fractional rate of protein synthesis - 168 

was measured using the flooding dose assay [29], modified for using stable isotope tracer, the ring-169 

D5-phenylalanine (D5-Phe) [30]. In short, the ratios of the amount of D5-Phe relative to the amount of 170 

total phenylalanine (D5-Phe plus its natural version) in both the protein pool and the free pool of 171 



amino acids allow calculation of the fractional rate of protein synthesis. The assay was first validated 172 

for brown trout of this age and size by conducting a preliminary time-course experiment (see ESM). 173 

From this validation experiment, we determined that a D5-Phe incubation period of approximately 60 174 

min was an appropriate incorporation duration.  175 

For the main experiment, the fish were fasted for 21h before being injected into the peritoneum with 176 

the D5-Phe solution. Each fish was then immediately placed in an individual tank containing 2 L of 177 

aerated water for a period of approximately 1h (mean ± SE: 1h05min ± 0h00min) without food and in 178 

darkness. The fish were then culled and their livers were immediately dissected, weighed and rinsed 179 

with distilled water. A subsample of liver was weighed and kept in ice-cold respirometry buffer (0.1 180 

mM EGTA, 15 µM EDTA, 1mM MgCl2, 20mM Taurine, 10mM KH2PO4, 20mM HEPES, 110 mM D-181 

sucrose, 60 mM lactobionic acid, 1g L-1 bovine serum albumin essentially fatty acid-free, pH 7.2 with 182 

KOH) for subsequent measurement of mitochondrial properties (see below). A second aliquot of liver 183 

for measurement of protein synthesis was weighed and immediately flash-frozen in liquid nitrogen 184 

and stored at -70°C until further analysis. Likewise, two samples of white muscle were taken dorsally 185 

to the lateral line (to avoid contamination with red fibres) and just behind the dorsal fin. One aliquot 186 

was collected from one side of the fish and kept in respirometry buffer while the other aliquot was 187 

collected from the other side and immediately flash-frozen. After extraction and quantification of the 188 

the phenylalanine isotopes in both the free amino acid pool and in the protein pool (Details in ESM), 189 

the fractional rate of protein synthesis (Ks in % day−1) was calculated as:  190 

Ks =
24
𝑡𝑡
∗  

(D5Phe / Total Phe) in protein amino acid
(D5Phe / Total Phe)in free amino acid

∗ 100 191 

where t is the actual duration of D5-Phe exposure in hours. 192 

 193 

Measurement of mitochondrial properties 194 

Since only two samples could be run simultaneously to measure mitochondrial properties, liver 195 

samples of the two individuals in a processing batch were first homogenized as in [15, 16] and 196 

assessed for mitochondrial function, while the subsample of white muscle was preserved in 197 

respirometry buffer on ice for the subsequent run.  198 

Oxygen and magnesium green fluorescence signals were detected simultaneously using two 199 

respirometry chambers equipped with fluorescent sensors and recorded using DatLab software 200 

(Oroboros Instruments, Innsbruck Austria). Tissue homogenate from each fish was added to one of 201 

the two measurement chambers immediately following preparation. Mitochondrial efficiency was 202 

measured as in Salin, Villasevil [31]. Briefly, we used a protocol for estimating the ATP/O ratio that 203 

simultaneously measures both oxygen consumption and ATP production on the same sample. 204 



Cytochrome c oxidase (COX) respiration was then measured to allow standardization of the 205 

mitochondrial density of the tissues [32]. The rate of oxygen consumption simultaneously to ATP 206 

production was assessed by adding saturating ADP to the chamber containing complex I and II 207 

substrates. COX activity was measured after addition of ascorbate and N,N,N',N'-Tetramethyl-p-208 

phenylenediamine dihydrochloride. The muscle trial was identical to the liver trial using the 209 

subsample of muscle that was kept on ice (see ESM for full details of the protocol). 210 

Rates of mass-specific oxygen consumption and ATP production at each step of the protocol were 211 

averaged over 30 to 60 seconds of stabilisation. Fluxes of O2 and ATP were expressed in pmoles s-1 212 

mg-1 wet weight of tissue. The ATP/O ratio was calculated as the ratio of corrected ATP production to 213 

double the rate of O2 consumption at the time that the ATP was being produced.  214 

 215 

Statistical analysis:  216 

We first used correlation analysis to test whether physiological parameters (mitochondrial efficiency 217 

[ATP/O ratio], mitochondrial density [COX activity] and fractional rate of protein synthesis [Ks]) were 218 

correlated between the liver and white muscle within the same fish. We then used linear mixed 219 

models to determine the links between mitochondrial efficiency of the liver and/or muscle and the 220 

fractional rate of protein synthesis for different rates of food intake. The models included Ks of liver 221 

or muscle as the dependent variable, ATP/O ratio of liver and muscle as continuous predictors, and 222 

the food intake (high or low) as a fixed factor, and two-way interactions between food intake and 223 

covariates. To control for effects of mitochondrial density on the fractional rate of protein synthesis, 224 

the models included COX activity of the liver and muscle as a covariate and in two-way interactions 225 

with food intake, with Ks as the dependent variable. Processing batch was included as a random 226 

effect to control for the order in which fish were processed. Preliminary analyses showed that the 227 

fractional rate of protein synthesis was not affected by the duration of D5-Phe exposure or the mass 228 

of sample used for the extraction of the phenylalanine isotopes, so exposure duration and mass of 229 

sample were not included as covariates in the final models. We finally tested whether the degree of 230 

mitochondrial efficiency and the fractional rate of protein synthesis of the liver and/or the muscle 231 

explained individual variation in growth performance using a linear mixed model approach. The 232 

models included the growth performance (Specific growth rate, Growth efficiency and Specific 233 

protein gain) as dependent variables, and ATP/O ratio and Ks of liver and muscle as continuous 234 

predictors, the food intake as a fixed factor, with processing batch as a random factor. To control for 235 

effects of mitochondrial density on growth performance, COX activity of the liver or muscle were 236 

included as a covariate in the models with specific growth rate, growth efficiency and specific protein 237 

gain as the dependent variable. These models also included two-way interactions between covariates 238 



and food regime. To control for effects of initial body size on growth performance, initial body mass 239 

was included as a covariate in the models with specific growth rate or growth efficiency as the 240 

dependent variable, while the initial estimate for whole-body protein content was included as a 241 

covariate in the model for specific protein gain. All models were simplified by removing non-242 

significant terms in a backward deletion procedure, starting with two-way interactions; significance 243 

was tested when terms were dropped from the model. All statistical analyses were performed in IBM 244 

SPSS Statistics 21 (Chicago, IL). Data are presented as means ± standard error, and the significance 245 

level was set to P<0.05. 246 

 247 

 248 

RESULTS 249 

The mitochondrial efficiency (ATP/O ratio) showed significant inter-individual variation, varying at 250 

least twofold for each tissue across individuals having the same food intake (table S1). The fractional 251 

rate of protein synthesis Ks differed up to two- or five-fold in liver and muscle, respectively, among 252 

individuals with the same food intake (table S1). There was no correlation between the physiological 253 

traits (ATP/O ratio and Ks) of the liver and muscle from the same fish (table S2).  254 

The fractional rate of muscle protein synthesis Ks in a fish depended on the ATP/O ratio of its liver 255 

mitochondria, although this effect depended on food intake (liver ATP/O by food intake interaction, 256 

table 1). While muscle Ks was positively related to the ATP/O ratio in the liver mitochondria of fish 257 

with the high food ration (t = 2.80; df = 36; P = 0.008), there was no such relationship in fish receiving 258 

a low food ration (t = -0.92; df = 36; P = 0.362; figure 1). Amongst-individual variation in the fractional 259 

rate of protein synthesis Ks in the liver was not explained by the mitochondrial efficiency in either 260 

liver or muscle (LMM, P > 0.05).  261 

Not surprisingly, food intake had a positive effect on specific growth rates, with fish on average 262 

having a specific growth rate threefold higher at the high compared to the low ration (table S1). 263 

However, individuals from the same food treatment varied considerably in their specific growth rate, 264 

with the fastest growing fish in the low ration exceeding the growth of some fish on the high ration 265 

(figure 2a; low food intake: -6.00 to 110.57 mg day-1; high food intake: 68.86 to 394.43 mg day-1). This 266 

individual variation in growth rate was partially explained by differences in liver mitochondrial 267 

efficiency, although the effect depended on food intake (liver ATP/O by food treatment interaction; 268 

table 2). The specific growth rate of fish receiving high rations was strongly and positively linked to 269 

the ATP/O ratio in their liver mitochondria (t = 4.46, df = 41, P < 0.001, figure 2a), whereas the trend 270 

was not significant when food intake was low (t = 0.33, df = 41, P = 0.745). Regardless of the food 271 

intake, the specific growth rate of a fish was strongly but negatively linked to the Ks in its muscle 272 



after controlling for liver ATP/O (table 2). Specific growth rates under either ration were unrelated to 273 

the ATP/O ratio in muscle mitochondria, or to the Ks in the liver (table 2).  274 

Growth efficiency varied among individuals from -0.13 to 2.23 gain in body mass per mass of food 275 

eaten but did not differ between low and high food fish (table S1). Regardless of their food intake, 276 

individuals that had the higher ATP/O ratio in the liver had the highest growth efficiency (table 2, 277 

figure 2b). 278 

The rate of protein gain of the trout also differed considerably amongst individuals, ranging from -279 

1.98 to 17.74 mg day-1 for fish eating the low ration and from -0.21 to 60.79 mg day-1 for fish on the 280 

high ration. Individuals that had a higher ATP/O ratio in their liver mitochondria, and a lower Ks in 281 

their muscle had a faster specific gain in protein mass (table 2). The specific rate of protein gain was 282 

not related to ATP/O ratio in the muscle mitochondria nor to Ks in the liver (table 2).  283 

 284 

 285 

DISCUSSION 286 

While the general trend was for growth performance to increase when food intake was higher, 287 

individuals exhibited markedly differing growth performance even when having identical food intake. 288 

This variation in growth was related to mitochondrial function: individuals that were more efficient at 289 

producing ATP within their liver mitochondria grew faster, more efficiently and accumulated more 290 

protein than those individuals with less efficient mitochondria. Individuals that had a higher liver 291 

mitochondrial efficiency under high food levels had a faster rate of protein synthesis in their muscle. 292 

However, these differences in protein synthesis had an effect on growth performance in the 293 

completely opposition direction to our initial prediction that “protein synthesis promotes growth”. In 294 

summary, our study shows for the first time that under conditions of a fixed food intake, the 295 

mitochondrial efficiency of an individual animal can determine whether it grows fast or slow. 296 

Individual variation in growth performance is likely to be a complex, integrative characteristic 297 

influenced by several physiological and behavioural traits. Because individual differences in growth 298 

rate covary with behaviours that increase feeding rates [33], only studies of animals with controlled 299 

food intakes can shed light on the physiological drivers of growth differences. Food intake in our 300 

experiment was standardized, revealing that growth of fish under the same ration could vary more 301 

than 3-fold amongst individuals. Consequently, some fish on the low ration treatment were actually 302 

faster growing than others on the high ration treatment that were consuming three times as much 303 

food. While it has previously been shown that increased mitochondrial efficiency promotes fitness-304 

related traits (physical performance [34], growth performance [9, 21-23, 35], reproductive output 305 

[36] and ageing [9, 14, 36, 37]), here we demonstrate that this relationship can even occur when 306 



animals are experiencing similar rates of food intake. As well as varying amongst individuals, 307 

mitochondrial efficiency is a flexible trait that can change in response to environmental conditions 308 

[38, 39] and stage of life [34, 40]. A higher mitochondrial efficiency may also have a cost, since 309 

mitochondria are a major producer of reactive oxygen species (ROS) and mitochondrial efficiency can 310 

be positively related to ROS production [17, 37]. When the generation of ROS in an organism exceeds 311 

the capacity of its antioxidant defence and repair mechanisms to combat its effects, there can be an 312 

accumulation of oxidative damage [41]. ROS have been proposed as an important factor underlying 313 

cellular and whole-organism senescence [41] and therefore, a potential cost linked to fast growth 314 

[42, 43]. Despite this cost, in some contexts natural selection may favour phenotypes with relatively 315 

high mitochondrial efficiency (since this can lead to faster growth, increased body size at maturity, 316 

minimized mortality risk and higher number of eggs), whereas in other contexts a lower 317 

mitochondrial efficiency and decreased ROS production might be beneficial (e.g. under conditions of 318 

ad libitum food availability) [7, 17, 37, 44]. This hypothesis is in accordance with several recent 319 

studies suggesting that variation in mitochondrial function is a key target of natural selection [45, 320 

46].  Our findings that fish with high liver mitochondrial efficiency had a high rate of protein synthesis 321 

in their muscles and faster growth match our predictions that a higher efficacy at converting food 322 

into ATP can lead to an increased allocation to energetically-costly processes such as protein 323 

synthesis and growth. Contrary to expectations, the rate of protein synthesis in white muscle was 324 

negatively correlated with growth performance; individuals that grew the best displayed lower rates 325 

of muscle protein synthesis for a given liver mitochondrial efficiency. An explanation for this 326 

discrepancy might lie in the fact that rates of protein synthesis are tissue-specific [47] and the 327 

correlation of protein synthesis rates across different tissues in the same individual can be poor (as 328 

shown by this study), and so the range of tissues that have been measured in our study might not be 329 

representative of the overall rate of protein synthesis in the entire animal since this would be 330 

defined as the sum of the individual tissue-specific rates of protein synthesis [48]. However, positive 331 

relationships between protein synthesis in white muscle and body growth have been reported in 332 

other species [26, 47]. An alternative explanation is based on the fact that body proteins are 333 

continually being broken down as well as synthesised, and so protein synthesis will only result in 334 

growth if the rate of synthesis exceeds the rate of degradation; it has previously been shown that 335 

growth variation among individual fish is more explained by variation in rates of protein degradation 336 

than rates of protein synthesis [26]. While measurements of protein degradation rates were beyond 337 

the scope of the present study, it may only be possible to explain observed patterns of protein 338 

growth if all aspects of protein metabolism (synthesis and degradation) are considered [49]. 339 

In conclusion, our study has demonstrated a clear positive relationship between the efficiency with 340 

which liver mitochondria convert energy substrates into ATP and whole animal growth performance. 341 

Future research should focus on quantifying the presumed costs of highly efficient mitochondria. 342 



Information on the causes and consequences of variation in mitochondrial efficiency would allow 343 

prediction of the consequences for whole animal performance of variation in mitochondrial function, 344 

so linking cellular processes to organismal fitness.  345 
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Table 1. Results from linear mixed model analysis of the fractional rate of protein synthesis (Ks) in 508 

the muscle of a brown trout as a function of its food intake and the properties (ATP/O ratio and 509 

cytochrome c oxidase [COX] activity) of mitochondria in its muscle and liver. Processing batch was 510 

included as a random effect to control for the order in which fish were processed. Non-significant 511 

terms were excluded from the final analysis. Bold denotes significant results.  512 

Dependant 
variable 

Source of variation Parameter 
estimate ± SE 

F d.f. P 

Muscle Ks* Intercept -0.00 ± 0.41    
 Food Intake# 0.88 ± 0.42 4.38 1, 39.71 0.043 
 Liver COX activity 0.00 ± 0.01 0.04 1, 46.95 0.837 
 Muscle COX activity 0.03 ± 0.01 5.25 1, 36.56 0.028 
 Liver ATP/O ratio 0.66 ± 0.23 1.30 1, 30.99 0.262 
 Muscle ATP/O ratio -0.03 ± 0.03 1.17 1, 26.98 0289 
 Food Intake# x Liver ATP/O ratio -0.92 ± 0.39 5.58 1, 40.41 0.023 

#Food intake: Two-level fixed factor (Low and High food intake). 513 
*Full model: Muscle Ks = Food intake + Liver COX activity + Muscle COX activity + Liver ATP/O ratio + Muscle ATP/O ratio + Food intake x 514 
Liver ATP/O ratio + Food intake x Liver COX activity + Food intake x Muscle COX activity + Food intake x Muscle ATP/O ratio .  515 



Table 2. Results from linear mixed model analyses of indices of growth performance in individual 516 

brown trout as a function of their initial mass, their liver and muscle mitochondrial density 517 

(cytochrome c oxidase [COX] activity), food intake, liver and muscle mitochondrial efficiency (ATP/O 518 

ratio ) and fractional rates of protein synthesis (Ks). Processing batch was included as a random effect 519 

to control for the order in which fish were processed. Non-significant terms were excluded from the 520 

final analysis. Bold denotes significant results. 521 

Dependant 
variable 

Source of variation Parameter 
estimate ± 

SE 

F d.f. P 

Specific 
Growth 
Rate* 

Intercept -0.38 ± 0.59    
Initial Body Mass 0.05 ± 0.02 9.69 1, 41 0.003 
Liver COX activity -0.01 ± 0.01 0.71 1, 41 0.403 
Muscle COX activity 0.06 ± 0.02 8.27 1, 41 0.006 
Food Intake# 0.55 ± 0.59 0.87 1, 41 0.355 
Liver ATP/O ratio 1.61 ± 0.36 11.7 1, 41 0.001 
Muscle ATP/O ratio -0.02 ± 0.04 0.18 1, 41 0.671 
Liver Ks -0.01 ± 0.02 0.30 1, 41 0.586 
Muscle Ks -0.54 ± 0.20 7.58 1, 41 0.009 
Food Intake# x Liver ATP/O ratio -1.49 ± 0.54 7.56 1, 41 0.009 

Growth 
Efficiency¤ 

Intercept 0.13 ± 0.41     
Initial Body Mass 0.06 ± 0.02 10.8 1, 48 0.002 
Liver ATP/O ratio 0.72 ±0.33 4.87 1, 48 0.032 

Specific 
Protein 
Gain¥ 

Intercept -3.03 ± 0.74    
Initial Protein Mass 0.00 ± 0.00 81.3 1, 31.25 < 0.001 
Liver COX activity 0.02 ± 0.01 2.80 1, 39.94 0.102 
Muscle COX activity 0.09 ± 0.03 0.11 1, 33.93 0.299 
Food Intake# 2.15 ± 0.85 6.34 1, 33.81 0.017 
Liver ATP/O ratio 1.04 ± 0.29 13.0 1, 30.84 < 0.001 
Muscle ATP/O ratio 0.02 ± 0.05 0.16 1, 18.86 0.690 
Liver Ks 0.01 ± 0.02 0.28 1, 35.40 0.601 
Muscle Ks -0.51 ± 0.24 4.44 1, 37.94 0.042 
Food Intake# x Initial Protein Mass -0.00 ± 0.00 29.4 1, 19.30 < 0.001 

 Food Intake# x Muscle COX  activity -0.13 ± 0.05 6.84 1, 32.27 0.013 
#Food intake: Two-level fixed factor (Low and High food intake). 522 
*Full model: Specific Growth Rate = Liver COX activity + Muscle COX activity + Initial Body Mass + Food intake + Liver ATP/O ratio + Muscle 523 
ATP/O ratio + Liver Ks + Muscle Ks + Food intake x Liver COX activity + Food intake x Muscle COX activity + Food intake x Initial Body Mass + 524 
Food intake x Liver ATP/O ratio + Food intake x Muscle ATP/O ratio + Food intake x Liver Ks + Food intake x Muscle Ks. 525 
¤Full model: Growth Efficiency = Liver COX activity + Muscle COX activity + Initial Body Mass + Food intake + Liver ATP/O ratio + Muscle 526 
ATP/O ratio + Liver Ks + Muscle Ks + Food intake x Liver COX activity + Food intake x Muscle COX activity + Food intake x Initial Body Mass + 527 
Food intake x Liver ATP/O ratio + Food intake x Muscle ATP/O ratio + Food intake x Liver Ks + Food intake x Muscle Ks. 528 
¥Full model: Specific Protein Gain = Liver COX activity + Muscle COX activity + Initial Protein Mass + Food intake + Liver ATP/O ratio + 529 
Muscle ATP/O ratio + Liver Ks + Muscle Ks + Food intake x Liver COX activity + Food intake x Muscle COX activity + Food intake x Initial 530 
Protein Mass + Food intake x Liver ATP/O ratio + Food intake x Muscle ATP/O ratio + Food intake x Liver Ks + Food intake x Muscle Ks.  531 



Figure 1. Relationship between the fractional rate of protein synthesis (Ks) in the muscle and 532 

mitochondrial efficiency (ATP/O ratio) in the liver of juvenile brown trout at low vs high food intake. 533 

Continuous lines show significant effect. N = 28-30 fish per food level. See Table 1 for statistical 534 

analyses. 535 

  536 



Figure 2. Relationships between indices of growth performance and mitochondrial efficiency in 537 

juvenile brown trout at low vs high food levels. (a) Specific Growth Rate in relation to liver 538 

mitochondrial efficiency (ATP/O ratio), and (b) Growth Efficiency in relation to liver ATP/O ratio. 539 

Continuous lines show significant effects. N = 29-30 fish per food level. See Table 2 for statistical 540 

analyses.  541 

 (a) 542 

 543 

Plotted are partial residuals of specific growth rate for fish at high food ration evaluated at mean 544 

initial body mass = 9.59 g. 545 

(b) 546 

 547 

Plotted are partial residuals of growth efficiency evaluated at mean initial body mass = 9.02 mg. 548 


