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Wave number of maximal growth in viscous magnetic fluids of arbitrary depth
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An analytical method within the frame of linear stability theory is presented for the normal field instability
in magnetic fluids. It allows us to calculate the maximal growth rate and the corresponding wave number for
any combination of thickness and viscosity of the fluid. Applying this method to magnetic fluids of finite depth,
these results are quantitatively compared to the wave number of the transient pattern observed experimentally
after a jumplike increase of the field. The wave number grows linearly with increasing induction where the
theoretical and the experimental data agree well. Thereby, a long-standing controversy about the behavior of
the wave number above the critical magnetic field is tackled.

PACS numbsgps): 47.20.Ma, 75.50.Mm

I. INTRODUCTION most unstabldinear pattern. Such a pattern should grow
with the maximal growth rate and should display the corre-
Spontaneous pattern formation from a homogeneousponding wave number. Since both quantities are calculated
ground state has been studied extensively in many nonlinedy the linear theory, the most unstable linear pattern has to
dissipative systems. Among these systems, magnetic fluidde detected and measured experimentally for a meaningful
have experienced a renewed interest in recent years due &@mparison between theory and experiment. No measure-
their technological importancgl]. The most striking phe- ments of the most linear unstable pattern have yet been un-
nomenon of pattern formation in magnetic fluids is thedertaken.
Rosensweig or normal field instabilitf2—5]. Above a Motivated by this puzzling situation, the paper presents a
thresholdB,, of the induction, the initially flat surface exhib- quantitative theoretical analysis of the wave number with
its a stationary hexagonal pattern of peaks. Typically, patmaximal growth rate for any combination of fluid param-
terns are characterized by a wave veajowhose absolute €ters. Experimental measurements of the most linear un-
value gives the wave number=|qg|. In contrast to many stable pattern are conducted and the data compared v_vith the
other systems, a comprehensiyeantitativetheoretical and theoretical results. The system and the relevant equations of
experimental analysis of the dependence of the wave numbé&he problem are displayed in the next section. Based on the
on the strength of the magnetic field is lacking for the normadispersion relation from a linear stability analysis, an analyti-
field instability. There are few but contradictory experimen-cal method is presented to calculadg and the maximal
tal observations. In experiments where the field is increase@ifowth ratew,, for any combination of material parameters.
Continuous|y, there are reports about Consﬁarﬁ] as well as The details of the method are explained for a magnetic fluid
about varying wave numbefg] as the induction is increased Of infinite thickness and the results are compared with pre-
beyond the critical valuB.. Notably, all these observations Vious asymptotic resultgSec. Il). The method is also ap-
are of entirelyqualitative characteif8]. plied to magnetic fluids of finite thickne¢Sec. I\V), which
A first theoretical analysis leading to constant wave num-2llows a quantitative comparison with the experimental data
bers of maximal growth was presented[Bi. The general (Sec. V. In the final section, the results are summarized and
dispersion relation for surface waves on a magnetic fluid ofurther prospects are outlined.
infinite thickness was analyzed for two asymptotic regimes:
fqr the inviscic_j regime and for the visg:ous—dominated '€~ || SYSTEM AND EQUATIONS OF THE PROBLEM
gime. The main result for the latter regime was that taking
into account viscous effects, the wave number of maximal A horizontally unbounded layer of an incompressible,
growth is the same at arfseyondthe critical induction. As  nonconducting, and viscous magnetic fluid of thicknéss
will be shown below, this argument is rather misleading be-and constant density is considered. The fluid is bounded
cause realistic fluid properties are not covered by such afrom below (z= —h) by the bottom of a container made of a
asymptotic analysis. The two asymptotic regimefdihwere = magnetically impermeable material and has a free surface
combined with very thin as well as very thick layers of mag-described byz={(x,y,t) with air above. The electrically
netic fluid and the resulting four regimes were analyzed innsulating fluid justifies the stationary form of the Maxwell
[11]. In three regimes, a nonconstant wave number of maxiequations, which reduce to the Laplace equation for the mag-
mal growth was found. netic potentialsb( in each of the three different regions.
All qualitative observations i2,6,7] refer to the final (Upper indices denote the considered medium: 1 air, 2 mag-
arrangement of peaks. The final stable pattern, resulting frometic fluid, and 3 containerlt is assumed that the magneti-
nonlinearinteractions, does not generally correspond to thezation M(?) of the magnetic fluid depends linearly on the
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applied magnetic field®, M@= (u,—1)H®@, where u, H , Mo,

is the relative permeability of the fluid. The system is gov- n; —P(1)+P+,U~ofo MdH"+ps+ 5-Mjy

erned by the equation of continuity and the Navier-Stokes

equations for the magnetic fluid, —pvni{div;+djvi}=—oKn;, (2.1
divv=0, (2.9 wherep™ is the atmospheric pressure above the fluid layer.

In a linear stability analysis, all small disturbances from the

basic state are analyzed into normal modes, i.e., they are

proportional to exp—i(wt)]. If Im(w)>0, initially small un-

o ) dulations will grow exponentially and the originally horizon-

and the Laplace equation in each medium, tal surface is unstable. Due to this relation, it has been estab-
AP =0 2.3 Iishgd _to de_noteo as a growth rate, which is in fact true only

for its imaginary part.

The quantities without an upper index refer to the magnetic Following the standard procedure, the linear stability

fluid with the velocity fieldv=(u,v,w), the kinematic vis- analysis leads to the dispersion relat{di-13 (all formu-

cosity v, the pressurg, and the acceleration due to gravity las in the references are equivalent to each ¢ther

The first three terms on the right-hand side of E42) result

from (L) divT(®, where the components of the stress ten-g—

1
v+ (v gradv= — ; grad p+ps) +rvAv+g, (2.2

V2

[a[4q4+ (q°+9?)?Jcoth(gh)

sor T read([3] qcoth(gh) —q coth(gh)
; H2 - 49%0(9%+0?)
T@=! —p- J M—pd,M)dH' — uo—-{ 6 —ql49%g%+ (g%+g?)?]tanH gh) — =
i [ P=wo] (M=pd,M) Ko~ ( dij a[4a°9°+(q°+qg")“Jtani(qh) costiah)sin@h)
+HB;+pr(divj+dv;). (2.9 toprM?

+tanh(gh)

o
gg+—q°~ —A(qh)qz}, (2.12
The magnetostrictive pressure is given bp,= p P
H ’
—pofopd,MdH’. M, H, andB denote the absolute value of . . ~ —
the magnetization, the magnetic field, and the inducBdn Wr?gre“‘) is the permeability of free spacg= Vg~ —iw/v,
the fluid. The governing equations have to be supplemente%

by the appropriate boundary conditions, which are the conti- (14 ) +e (1))

nuity of the normal(tangential component of the induction A(gh)= . (213
(magnetic fieldl at the top and bottom interface, eI 1+ u,)?—e M(1—pu,)?
n-(BM-B@)=0, nx(HM-H@)=0 atz=¢, The condition of marginal stabilityy=0, defines the thresh-

(2.5 old wherew changes its sign and therefore the normal field
or Rosensweig instability appears. With=0, one obtains

2)_RG3)— 2 3)) _ _
n-(B@-B®)=0, nx(HA-H®)=0 atz=—h, from Eq. (2.12
(2.6
the no-slip condition for the velocity at the bottom of the P9 o (1B
0-slip y PRy 2 aA(@hy=0.  (2.14
container, T Loty O
v=d,w=0 atz=—h, 2.7 In the limit of an infinitely thick (v— o) or an infinitely thin

(h—0) layer, respectively, the critical inductions are
the kinematic boundary condition at the free surface,

B2 _ 2pom(pr+1)\pog

w=¢,{+ (v grad{ atz=¢, (2.8 Coe ( 1)? , (2.15
My —
and the continuity of the stress tensor across the free surface,
@ _ T ,  ApouiVpog
ni(TH=Ti?)=—oKn; atz=¢. (2.9 BC’OZW, (2.16
My

The surface tension between the magnetic fluid and air is
denoted byo, the curvature of the surface b§=divn, and  whereas in both limits the critical wave number is equal to
the unit vector normal to the surface by

[pg
. grac[z_g(x-yit)] _ (—axg,—ﬁyg,l) 9= e, = de,0= ? (217)
lgradz= Oy DI T+ (0,0) 2+ (0,0)2

(2.10  The critical values apply to both viscous and inviscid mag-

netic fluids due to the static character of the instability.
Since the density of air can be neglected with respect to thBased on the dispersion relatid®.12), the details of the
density of the magnetic fluid andX)=0 holds, Eq.(2.9) proposed method are presented exemplarily for a magnetic
reduces to fluid of infinite thickness in the next section.
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IIl. INFINITE LAYER OF MAGNETIC FLUID 0.5 T

The starting point of the analysis is the determination of
the parameters for which the dispersion relati2ri2 for an
infinitely thick layer[9] 0.0

. )
(1_|_w)2 ! 9q+ oq® _M 2 2} g
2vq?] " 4piPq*|P (prt 1) popts § -05
iw gi)
=\/1-—; (3.1)
vq -1.0

has solutions of purely imaginary growth rates. Such growth
rates characterize the viscous-dominated regime described k

qo>1 [9], whered= \2v/w denotes the viscous degthO]. 13 00 ; 075 150
For w, the polar representatiom= w;+iw,=|w|(cosg, °  viscosity V

+isingg) is chosen with

. _ FIG. 1. Purely imaginary growth rate=iw, as a function of
0 if n=0 andd>0 the viscosity forq=1. Fork=0 (solid lineg positive values ofv,
T if n=0 andd<0 exist for all viscosities whereas negative ones exist only above a
m/2  ifn=0 andd=0 critical wscosﬂyvC 0.453. Foikk=1 (dashed lingthe upper bound
(3.2 for w—lw2 is given by v.. The long-dashed line indicates the

w32
o= arctan—-+{
“1 condition vg?= | w| for w,<O0.

27 if n<0 andd>0
T if n<0 andd<0

37/2 ifn<0andd=0, —|w|coseg
N U= arctala_—2 + const 3.7
wheren (d) denotes the numeratdédenominator of the ar- *lolsing,

gument of arctan. Dimensionless quantities were introduce

for all lengths. the induction, the time, and the viscosity, gnd k distinguishes between the two possible values of the

complex root. The value of the constant in E8.7) follows

- _ B the rules of Eq.(3.2). For a purely imaginary growth rate,
=q., B= 5 (3.3 —|w2 @, can take only the two values/2 (w,>0) and
o 37/2 (w2<0). In the former case, Eq3.6) is always ful-
L gl ¢ guayae llezd, ﬂhereas_ln_ihe latter case, E(.6) holds only if
i t=t—, ===V (3.4  vg°>|w|. Forw=iw,, Eq. (3.5 reduces to

—\2 =, =3 .=
wheret, is the so-called capillary time. The real and imagi- f . (q |w| v,B): <_+M> + M

nary part of Eq(3.1) now read 2 4q*
_ N [ — J— —\ 2
2 e ; 3_oRpZ2q2 __ 4 )
—_ |w]| (0052<p_0 sirfgg) . V|w|_SIn(p0+ q+q _ZB q P /4( 1+u) cogkm) =0, (3.9
4q* q° 4q* vo?
4 " lw|singg |~ |w|?coe, where the+ sign corresponds t@,=0. The parameters
-7 10 2q* andB determine the solution of this implicit equation for the
variablesq and|w|. The solution gives these specific values
><cos< P+ 2k77> K=0.1 (3.5 of the viscosity for which either positive or negative purely
2 ' ” ' imaginary growth rates exigsee Fig. 1 For a supercritical
. L induction ofB=1.05 andq 1, there exists a positive purely
|w|28in(pOCOS(po v|w|coseg imaginary growth rate forll viscosities k=0). Above a
2_4 EZ critical viscosity, v.=0.453, a negative purely imaginary
growth rate solves Eq3.8) as well. This critical viscosity
=5 also gives the upper bound for the solution witl 1. The
— |w|S|ngoo |w| COSZ(,DO — — = - s . . .
—= value of v;=r.(q,B) increases with increasing induction at
va constantq and decreases with increasing wave vectors at
|+ 2kT constantB. The critical viscosity is naturally zero at the on-
Xsinl———|, k=0,1, (3.6 : =S
2 set of the instabilityy.(q=1, B=1)=0.

Whereas Fig. 1 shows a situation where certain types of
where solutions of the dispersion relation exist, in Fig. 2 the com-
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FIG. 3. Positive purely imaginary growth rates as a function of

FIG. 2. Growth ratew=w;+iw, as a function of the wave the wave numbeq and the strength of the inductioB for v
numberq for »=0.037 andB=1.05. The empty symbols{, ¢,  —0-037. typically for magnetic fluids in experimerifg,14. The
0) show Rea)zgl and the filled symbols &, ¢, ®, W) dis- maximum is given byw,, andq,, which both increase monoto-

play Im(w) = w,. A positive purely imaginary growth ratd) ex-  nously withB.

ists only in the vicinity ofg=1.

o __ viscosity characterizes typical magnetic fluids in experiments
plete solution of Eqs(3.5 and (3.6) for B=1.05 andv [7,14]. All three curves have a maximum in the growth rate
=0.037 is plotted k=0). Around the critical wave number o, =iw,,, at q,. One notes that,, as well asq,, are
g.=1, a range of wave numbers exists with positive purelymonotonously increasing functions of the strength of the su-
imaginary growth rateffilled squares i.e., there is a band of percritical induction at constant viscosity.
unstable WaV?S(\;}IEICtng_- 'i‘\” OIquerdchQWth rgtes hg\ﬁl nclj‘-‘%"?‘tiVe In order to study the resulting behavior ofq
imaginary partgfilled circles, filled diamonds, and filled tri- — —=— _ — . —
angles. Therefore, the unstable wave vectors are related to 9 Y2/|@| at Am, the details of the dependence @fn
the positive purely imaginary growth rates only. Focusing onr@nddm on the fieldandthe viscosity need to be known. The

this solution, the imaginary pat, is shown in the vicinity ~Wave number with the maximal growth rate is defined by

of q. for various strengths of the induction and=0.037 Jwy/9q=d|w|/9q=0. Since |w| is given implicitly by
(v=6.4x10"° m?s %) in Fig. 3. The chosen value of the f.(q,|;»,B)=0, the maximal growth rate results from

_—— &f+
9(q,|w|;v,B):=—==0
Jq
=2560°[ 1— co (k) ]g®+ 963" + (9v+ 128 — 13B?+[4+ 3 co(km) ]v*| w|})q®
+8(—3vB%+ 413+ 1807 w|)q°+ {16/ 20— 9 cod(km) |13 w|?+ 6 v+ 16vB* + 9| |
~ 192 0|B%g* + 8(617 w| + 6| w|2— 3|w|B2— vB2)q3+ ( — 64v| w|2B%+ 6417| w|®

+6|w| + 16 w[B*+ v)q?+8(2v] 0|~ |w[B)q + o). (3.9

The cross section of the solutions of EG‘S8) and (39) less with increasing induction, e_gAam: 1.68 for ;

gives|wy| andqy,, which is shown for three different vis- _ 0 037 reduces td q,,=0.29 for»=2 at an induction dif-
cosities in Fig. 4. Besides a viscosity of real magnetic fluids — . L _
ference ofAB=0.5. For small viscositiesy,,, depends lin-

two large viscositiesfz 0.4,2) were chosen to represent the — = L .
regime where the behavior of the fluid is dominated by thetarly onB if B is not too large. This linear dependence shifts

viscosity. For all three viscosities, the wave numbgiis not  towards higher values d& with increasing viscositycom-
constanti.e., for finite viscosities),, depends on the exter- pare»=0.037 and 0.4 At the largest viscosityp=2, no
nal control parameteB. With increasing viscosity,,, varies  linear behavior can be observed foxB<1.5.
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3.0 . . . - fluid properties are not covered by the other asymptotic re-
gime q,,60<1 analyzed in[9]. Therefore, the experimental
observation i 2,6] cannot be explained by the result of an
asymptotic analysis which does not meet the features of the
experimental fluids. By plotting the known analytical result

in the inviscid regimeq,,= (1/3)(2B%+ \4B*—3) [11], re-
alistic magnetic fluids tend rather to the limit-0 than to

the limit v— o (see Fig. 4as exploited in earlier studi¢g].
But for quantitativecomparisons in typical experimental set-
ups, asymptotic analyz€8,11] are insufficient.

34
i

maximal wave number q_ (q,)
[\
>

—_
W

=
<

IV. FINITE LAYER OF MAGNETIC FLUID

, , . Since the experiments are performed with a vessel of fi-
12 13 14 15 nite depth, the method presented in the preceding section has
induction B (B, ) to be applied to magnetic fluids of finite thickness. With the
o polar representation ab, the real and imaginary part of the
FIG. 4. Maximal wave numbeq,, as a function of the super- dispersion relatiori2.12) read

critical inductionB for different viscositiesq, is a monotonously

154
n

—
=]
—_
—_

inc_rgasing funct_ion oEwith the exceptioramf 1[9]in the case of 12 & & —R3— &) + I_l(l_z —l3— I_“ +tanhgh)
infinitely large viscositieglower dot-dashed lineIn the limit of an Ni | N Ny N1 N Ny
inviscid fluid (upper dot-dashed linghe dependence af,, on B is o (— 1)282
given by, = (1/3)(2B2+ V4B*— 3) [11]. x| gg+ —q3— r—/\(qh)q"} =0, (41
p Motrp

The analysis reveals that only in the case of infinitely
large viscositiegwith respect to the viscosity of real mag- V] —|——l3— —|+—| ———+Rg+ —||=0.
netic fluid9 can a constant wave vector of maximal growth N1 1N, Na/  Nit o Ny Ny

L . 4.2
dm=1 be expected. Taking into account viscous effects does 4.2

not necessarily lead to a constapy. For a better compari- The explicit form of the abbreviatior®;, I;, N1, N, and
son with [9], the value ofgs at q,, is calculated and is Ns (i=1,...,4) isdeferred to Appendix A. For purely
plotted for the three viscosities chosen in Fig. 5. The graph§naginary growth ratesy=iw,, Eq. (4.2) is fulfilled with-

show clearly that, 5> 1 holds only in the close vicinity of °OUt 8Ny restrictions fots,>>0 as well as fow,<0 In con-
o . i L — _ trast to the case of an infinitely thick layer. Only positive
the critical induction for large viscosities'0.4,2) and in -, rely imaginary growth rates are of interest for comparison

the limit B=1 (Jwy|=0, 6=c0) for realistic viscosities ¥ with the experiment. Therefore, the functibis now of the
=0.037). Because 0.43q,,6<1.08 for »=0.037, realistic form

20 f+(Qaw;V,B,h)
3 v?[cosi2g,h) —1]
© q;sinh(29;h) — geoth gh)[ cosh2q;h) — 1]

15
qsinh(2q;h)(59*+ 2972+
s X(m 2, (e 20T r T
@510 cosh2q:h)—1
= pe 2,12
3 P PN M w1
= ! Y costgh)sinh(q;h)
5
o (pr— ’B? }
+tanh gh +—q®— ———A(qh)g?|=0,
hah)|gq P Loriep (gh)q

0
L0 1.1 1.2 _ 13 1.4 1.5 4.3

induction B (B, ,) where this implicit equation fog and w contains the addi-

tional parameteih. Figure 6 shows the solution for three
i = different depths of the layer at a supercritical induction of
the viscositiesy=0.037, 0.4, and 2. The conditigm,ﬁ»l holds B=106x10"% T. The used material parameters of the com-
only in the close vicinity of the critical inductiorB~1, for large  mercially available magnetic fluid EMG 90Ferrofluidics
viscosities ¢=0.4,2) and in the limiB=1 for realistic viscosities Corporation are listed in Table I. The graphs show that the
(v=0.037). wave number of maximal growtt),, clearly varies less with

FIG. 5. Behaviour ofj§ atq,, as a function of the induction for
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FIG. 6. Positive purely imaginary growth rates as a function of
the wave numbeq and the thickness of the layer at a constant ' '
induction ofB=106x 10" * T. Remarkably, the graph for a layer of
2 mm is already close to the limit of an infinite thick layer illus- _~ 120 |
trated by h=100 mm. Whereas the wave number of maximal
growth shows only a small variation, the maximal growth rate itself
displays more distinct changes. Material parameters of the fluid
EMG 901 are listed in Table I.

h than the maximal growth rate, , itself. Notably, the so-
lution for a layer of 2 mm thickness is already near the infi-
nite case illustrated blp=100 mm. Therefore, a filling with
h=1 cm of magnetic fluid can be considered as an infinite
thick layer. To make such an estimate is an asset in the use ¢
the complete equations. Because they cover the entire rang

40

maximal growth rate ©,, (s’

of thickness, B=h=o, in extension to the asymptotic analy- o LL - !
sish=0 andh=o0 in [11]. 100 o L 120 130
To analyze the behavior ab,,,, andq, on B andh, the induction 10 B (T)

maximal growth rate, given byf, /9q=0, has to be deter-
mined. As the resulting implicit function is quite lengthy, we

do ”9‘ give the explicit form here. The cross section of thethree different thicknesse&) q,, increases linearly witlB except
solutions of Eq(4.3 anddf , /9q=0 leads towy m andqp . for B near the critical valud. . The area of nonlinear behavior

Their dependence on the supercritical induction and th@prinks with the shrinking thickness of the layés) ., starts to
thickness of the layer is shown in Fig. 7. The wave numbegrow like a square root above the onset of the instability. This
of maximal growth increases linearly witwith the excep-  square root behavior becomes less pronounced with thinner layers.
tion of B near the height-dependent critical valBg,. The  Material parameters of the fluid EMG 901 are listed in Table I.
linear behavior is independent of the thickness of the layer
and holds up to 30% abou®, ,. The maximal growth rateé yange of layer thicknesses. An excellent agreement is
w,y, Starts to grow like a square-root above the onset of the,-nieved folh=4 mm by
instability. This square-root behavior becomes less pro-
nounced with thinner layers.

Through the implicit character of the functions, an ana- am=3.26§—0.09\/§ for 0.001<B<0.2, (4.4
lytical expression cannot be given for the dependenaog,of
and w,, on B and h. Alternatively, a two-parameter fit is R _ R R
tested, which describes the generic behavior over a wide wzym=1.18\/5+2.98 for 0.001=B=<0.2 (4.5

FIG. 7. Maximal wave numbey,,, (a) and maximal growth rate
wom (b) as a function of the supercritical inductid™>B,, for

TABLE I. Material parameters of EMG 901 and EMG 909. . . ~
(see Fig. 8 where B=(B—B¢n)/Bch, dm=(dm

EMG 901 Source EMG 909 Source —0Oen)/0en, and &)Z,mzwz,mtc denote the scaled distances
from the critical values. Fosmall B, the behavior ofy,, is

e 4.0 Ferrofluidics 1.8 Ferrofluidics ) IS

p(kgm3) 1.53x10° [15] 1.02x16° FEerrofluidics  ©Nnly weakly nonlinear whereas the behaviorgf,, is deter-

v (M?s™) 6.54<10°® Ferrofiuidics 5.8%10°® Ferrofiuidics mined by the square-root term. A careful inspection of the
o (kgs?) 2.27x10°2 [15] 2 65% 102 [7] data reveals that fon=2 mm (filled circles, small devia-

tions from the proposed fits appear;, grows linearly over
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FIG. 8. Scaled maximal wave numbey, (2) and scaled maxi-

mal growth ratew,, (b) as a function of the scaled supercritical ~ FIG. 9. Scaled maximal wave numbey, (a) and scaled maxi-
induction B. The data are calculated for=100 mm (), 50 mm  mal growth ratea)zvm (b) as a function of the scaled supercritical
(*), 10 mm (+), 4 mm ), and 2 mm @). Forh=4 mm, the  inductionB. The data are calculated for=100 mm (), 50 mm
data are fitted by, =3.268 —0.09B for §,, [solid line(a)] and by (*), and 10 mm(+). For B<»%/6, i.e.,B<4x 10~* for EMG 901,
Zoz,m=l.18\/§+2.9f% for @, [solid line (b)]. Small deviations the agreement with the analytical result§,=(6/v%)B?

from the generic behavior can be seenlier2 mm (insey. Mate-  —(18/»%)B2 [solid line (a)] and Q,Z’m:(z/y_)é_(g/,,_?’)éz [solid
rial parameters of the fluid EMG 901 are listed in Table I. line ()] is very good. Material parameters of the fluid EMG 901 are
listed in Table I.

the entireB region[see inset in Fig. @]. Thush=2 mm
indicates the lower limit of the validity of Eqg4.4) and
(4.5.

Since the fit covers the region of infinite thick layers, one

where the coefficients depend on the viscosity. Figure 9
shows the very good agreement between the numerical solu-

tion and the expansion fdB<1%/6. The region where the

~ A A expansion holds extends with the square of the viscosity. The
can expand Eqg3.8) and(3.9) for smallB, qp, andwm.  expansion(4.6) and (4.7) and the scaling4.4) and (4.5
Taking into account that the dimensionless viscosity is als%how that the behavior d.
small for real magnetic fluidsuy=0.0483 for EMG 90}, the
expansion leads to

and wzym is entirely governed
by the two parameters viscosity and induction for not too
thin layers. The third parametérhas only a small effect in
this regime.

~ 6., 18., V2 From the results shown in Fig. 7, one notes the height
Am= jB jB for 0<B E’ 4.6 dependence dB. andq. at the onset of the instabilitisee
also Figs. 4 and 5 if12]). This dependence fdB. can be
5 3 2 exploited to measure the permeability of the magnetic fluid
Wym==B— —B? for 0<B< — (4.77  “lustin time” for the experiment. Since the quotient of the
Ty 8 6" two limits (2.15 and(2.16) depends onu, only,
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FIG. 10. The critical inductiorB, ;, versus the thickness of the
layer h for three different surface tensionsio=2.275
X102 kg s 2 (solid ling), 0=2.275<10"* kg s ? (dashed ling

FIG. 11. Maximal wave numbe[Tm as a function of the super-
critical inductionB of a thin film, h=1 um, for three different

~ : . . iscosities: »=6.5x10 8 m?>s ! (O), »=6.5x10°m?s?
ando=2.275 kg 52 (long-dashed ling By increasing the surface VISCOS " e 5 g ' .
tension by a factor of 1@100), B., can be measured for layers (0)), andy=2.0<107° m" s™* (A). The numerical data show that

nearly onetwo) orders of magnitude thicker than for a system with the behavior ofgy, on B is independent ot and it is given by

the original surface tension. The remaining material parameters dm=(1/4)(c+\c?—8) with c=3B%(u,+1)/(2x,) [11] (solid
the fluid EMG 901 are listed in Table I. line). The remaining material parameters of the fluid EMG 901 are
listed in Table I.
Beo _ 2 L — . S
B, P (4.8 v_arlatlon of q,, on th(_a appll_ed magn_etlc induction in thin
o ' films was measured in earlier experiments where the mag-
netic fluid either was prepared at the bottom of a quartz
chambef16] or was laid on top of a denser flujd7,1§. In

the determination of the two limits dB, offers a feasible

access tm,.of the magnetic fluid. From Fig. 10 it can be all three experiments, the spacing betweenfihal arrange-
seen thaB, increases monotonously froBy, .. towardsB, o

with decreasing layer thickness. Since the preparation of ent of peaks was measured in dependence of the applied

very thin layers is laborious and delicate, it would be desir- leld and a nonlinear behavior was found.

able to shift the thin layer limit towards thicker films. This

can be achieved by an increase of the surface tension. A V- MEASUREMENT, RESULTS, AND COMPARISON
modified surface tension is accompanied by changes in the WITH THEORY

density and permeability of the fluid. But these changes are
of a much smaller scale than those of the surface tensio
The modified viscosity does not affect the determination o
B. . Therefore, the surface tension is changed whereas

In this section we report on experimental results of the
ependence of the maximal wave number on the supercriti-
al magnetic induction. First we present the experimental
etup, next we give a characteristic example of the pattern
&volution. We continue with a description of the techniques
applied to extract the wave number of the patterns. Finally,
the experimental results are compared with the theoretical
results of the preceding section, particularly the predicted
growth of the maximal wave number.

Our experimental setup is shown in Fig. 12. A cylindrical
Teflon® vessel with a diameter af=12 cm and a depth of
. 2 mm is completely filled with magnetic fluid and situated in
(ue+1) N \/954(#«# ) _g| (a9 thecenter of a pair of Helmholtz coils. The experiments were
20, Au? ' performed with EMG 909. The fluid is illuminated by 90 red
LEDs mounted on a ring of 30 cm diameter placed at a
is the same. Therefore, one can assume that the dependerigtance of 105 cm above the surface. A CCD camera is
of am onB is not influenced by the viscosity in the thin-film positioned at the center of the ring. By this construction, a

limit. Since the present method allows us to calcuﬁ{,e‘or flat fluid surface reflects no light into the camera lens, how-
' s . ever an inclined surface of proper angle will reflect light into
any combination of parameters, we are able to accorﬂpllsh e camera[19]. The CCD camera is connected via a
test of this assumption. As Fig. 11 shows, the behaviar,of  framegrabber to a Pentium 90 MHz PC and serves addition-
onB is indeed independent of (The tested viscosities cover ally as a fundamental clock for timing the experiment. In the
a range from 6.8510 8 m?s ! to 2x10 °m? s 1) The theoretical analysis the supercritical magnetic field is as-

tension by a factor of 1@100), B,y may be measured for
layers nearly onétwo) orders of magnitude thicker than for
a system with the original surface tensi@ee Fig. 10

Abou et al. analyzed the limit of thin films of magnetic
fluid for vanishing and infinitely large viscosities. In both
cases the analytical resiilt1]

3B2
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CCD camera > computer +
frames + clock D/A converter
@) [ A

ring of LEDs
Helmboltz coils A
DVM
teflon dish with magnetic fluid DTM
D] ‘
Hall probes-r T A
: v A
¢ " amplifier | FIG. 14. Three steps of the picture processing to extract the
_ wave number(a) Reflections of circular surface deformations. The
FIG. 12. Scheme of the experimental setup. white line in the left upper and lower corner marks the calculated

edge of the dish, the circles on the edge serve to calculate the center
sumed to be instantly present, thus in the experiment thef the dish. (b) Radial gray level distribution ofa). (c) Two-
magnetic field has to be increased jumplike from a subcritidimensional representation ¢).
cal valueB, to the desired valuB. For all measuremen,

was fixed to 13% 10" T. The jumplike increase of the field jumplike increase of the magnetic field. With increasing time
is initiated by the computer. Its D/A converter is connectedmore circular deformations evolve, approaching the center of
via an amplifier(fug Elektronik GmbH to the Helmholtz  the dish[see Fig. 189)]. Onto this pattern, Rosensweig
coils (Oswald Magnetfeldtechnik The magnetic system peaks emerge out of the crests of the circular surface defor-
cannot follow the control signal instantly; its relaxation time matjon, as can be seen in Fig. (BB After this transient
7g t0 a jumplike increase of the control signal depends on th@oncentric arrangement, a hexagonal pattern of Rosensweig
jump height AB=B—B,. For a maximal jump height of peaks evolvegsee Fig. 1&)].
AB=70x10"*T, the relaxation time mounts up teg The theoretical results stem from a linear theory which
=80 ms. The other characteristic time scales of the systeman determine correctly the critical values of the pattern se-
are the capillary time scalé;=13 ms, and the viscous time lected by the instability only at the threshold. Above the
scale,t,,zl/(qﬁv)~—~450 ms. threshold, a band of wave numbers will become unstable,
For the empty Helmholtz coils, the spatial homogeneity ofwhere the mode with the largest growth rate is the most
the magnetic field is better than1%. This grade is valid unstable linear mode of the flat interface. Due to nonlinear
within a cylinder of 10 cm in diameter and 14 cm in height effects, the final stable pattern does not generally correspond
oriented symmetrically around the center of the coils. Twoto the most unstable linear mode, as shown here and in other
Hall probes are positioned immediately under the Tétlon experiment$20]. Therefore, it has to be stressed that for the
dish. A Siemens Hall probé&SY 13) serves to measure the comparison with the linear theory it is not the stable hexago-
magnetic field during its jumplike increase, and is connectedhal pattern but the most early stage of the pattern, namely the
to the digital voltmetefPrema 6001l For measuring a con- transient circular deformations, that is appropriate.
stant magnetic field and for calibration purposes we use a The wave number of the circular deformations is ex-
commercial Hall probéGroup3-LPT-23] connected to the tracted from the pictures in the following way. First the al-
digital teslametefDTM 141). Both devices are controlled gorithm scans the diagonals of the picture for the local maxi-
via IEEE bus by the computer. mum of the gray levels. Starting at the corners of the
Next we give a characteristic example for the evolution ofpictures, it detects points which are situated at the edge of
the surface pattern during a jumplike increase of the magthe Teflor® dish. Two of the edge points are marked by
netic field. Figure 1@) shows circular surface deformations white circles in the left part of Fig. 14). From the full set of
taken At=180 ms after the start of the experiment. Thesefour points, the algorithm calculates the center of the dish
surface deformations are first created at the edge of the disdenoted by the half circle at the right part of Fig.(44 In
because of the discontinuity of the magnetic induction in-order to control the precision of the algorithm, a white circle
duced by the finite size of the container. The circular defor-with the proper radius of the dish is constructed around the
mation is fixed in space, and its amplitude grows during thedetected center. In the next step, we calculate the radial dis-

FIG. 13. Series of snapshots of the principal pattern evolution of the magnetic fluid for a jumB§roB, to B>B., illuminated from
above by a ring of LEDs. The pictures are takein= 180 ms(a), 280 ms(b), 560 ms(c) after the start of the increase of the magnetic field.
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1000 - ' - - ' tween the experimental results and the theoretical graph for
o m,=1.85 marked by the solid line. THmear increase in the
appearing wave number, both in experiment and in theory, is
our main outcome.

Comparing the two theoretical curves in Fig. 15, an in-
crease ofu, results in a decrease of the critical magnetic
induction, whereas the critical wave number remains con-
stant, as can be seen from E¢®.15—(2.17). According to
Eqg. (2.17), a constant critical wave number implies that the
] density and the surface tension are constant. Therefore, we
refrain to consider them as additional fit parameters. As can
be seen from Fig. 4, changes in the viscosity by an order of
magnitude are necessary to cause a relevant influence on the
behavior of the wave number of maximal growth on the
induction. Therefore, changes in the viscosity due to small

FIG. 15. Plot of the wave numberversus the magnetic induc- thermal fluctuations in the experiment can be neglected.
tion B. The open squares give the experimental values, the dashed We find a linear wave-number dependence of the circular
line displays the theoretical results for the material parameters ogurface deformations. This pattern is a more simple realiza-
EMG 9009 listed in Table I. Using:, as a fit parameter gives the tion of the normal field instability than the familiar hexago-
solid line. nal pattern of Rosensweig cusps. The latter one is obtained

by a symmetrical superposition tfiree patterns of parallel
tribution of the gray values for all pixels within the circum- stripes with the wave vectors separated by 1pF]. Obvi-
ference of the dish, as shown in Fig.(i4 For comparison, ously the circular surface deformations can be regarded as a
Fig. 14(c) gives an artificial two-dimensional representationstripe pattern favored by the symmetry of the dish. As a
of the gray-value distribution. consequence they appear first, before nonlinear interactions

In all of the three pictures of Fig. 14, one can easily dis-select in a later stage the hexagonal pattern. This situation is
criminate three zones. In the innermost zone only small surwell known from Rayleigh-Benard convection in cylindrical
face undulations exist, which give rise to the unstructurectontainers, where, due to side-wall induced convection, con-
part of the gray-value distribution in Figs. 4 and 14c).  centric target patterns appear instead of hexagonal structures.
For larger radii one finds the area of circular surface deforOur observations agree in part with recent findings by
mations which generates the biperiodic peak pattern in th&rowaeyset al. [22]. They detected circular surface defor-
distribution. The large peaks are correlated with the deformations for a constant, subcritical magnetic field of B1Z9
mation troughs and the small peaks with the deformatiorin contrast to their experiment, we do not perform a periodic
crests. Finally the outermost zone includes the edge of thmodulation, but a jumplike increase of the magnetic induc-
dish together with the first, edge-induced, deformation crestion. Thus we have no interference with additional waves
For estimation of the wave number we discard the innermospropagating onto the circular deformations. Therefore, a
and outermost zones. The top part of the peaks in the remaimeasurement of the wave number, as described above, could
ing zone is fitted by a polynomial of second order. The av-be realized.
erage distance of their maxima gives half of the desired The circular surface deformations have to be distin-
wavelength. For the rather small number of deformationgyuished from circular, meniscus-induced surface waves emit-
available, the above presented method of wave number caled from the edge of lateral cell wall&3]. Here, the circular
culation turned out to be more stable and to give more predeformations are induced by the discontinuity of the mag-
cise results than the competing method of two-dimensionahetic induction at the edge of the container. The formation of
Fourier transformation. Together with the picture, the mo-a meniscus is eluded by a brimful filling of the dish and by
mentarily magnetic induction has been recorded during théhe design of the vessel, which has a slope with respect to the
jumplike increase. This allows an exact relation of the ex-horizontal of 15°, the contact angle between the magnetic
tracted wave number to the instantly prevailing magnetic influid and Teflorf .
duction. Finite-size effects due to the finite size of the vessel are

Let us now focus on the experimental results displayed irather small in the experiment. Applying the arguments of
Fig. 15, where the wave numbaeiis plotted versus the mag- Edwards and Fauvi24], the width of the band of unstable
netic inductionB. Each open square denotes the wave numwave numbersAq=4.6 cm * for B=180x10 * T and h
ber extracted from a picture taken during a jumplike increase=2 mm, is much larger thanr/d=0.3 cm !, the wave-
of the magnetic field td>B.. The estimated maximal er- number separation between the quantized modes of the ves-
rors forq of =4.2% and forB of =0.9% are not plotted for sel. Thus the influence of the vessel size can be neglected
the purpose of clarity. The dashed line displays the theoretand the developing pattern is insensitive to the vessel size.
ical results for the listed material parameters of the magnetic For the experiments we have chosen a magnetic fluid with
fluid EMG 909. Usingu, as a fit parameter gives the solid a rather low value of magnetic permeability, =1.85, in
line with u,=1.85. The fitted value fo, differs by 2.8%  order to keep hysteresis effects small. Indeed, with our reso-
from the value given by Ferrofluidics, a deviation which lution a hysteresis cannot be detected. Hysteresis strength
is well within the tolerance of production specified by Fer-proves to increase monotonically with the permeability of
rofluidics. Obviously there is a rather good agreement bethe magnetic fluid25]. Thus, the influence of higher perme-
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By means of the polar representation of the complex fre-
quencyw, the dispersion relation for surface waves on vis- APPENDIX

cous magnetic fluids is split into a real and an imaginary The abbreviations in Eq$4.1) and (4.2 read explicitly
part. The parameters are determined for which pure imagi-

nary solutionsw=iw, and w,>0 for both parts exist. For R1=[COSN2a1h)—COS(ZElzh)]{al sinh(2G,h)
these parameters the originally horizontal surface is unstable,

because initially small undulations of the surface, propor- +70, sin(2q,h) — g coth(gh)[ cosh2q; h)

tional to expiwt), grow exponentially. The imaginary part _

of the dispersion relation is fulfilled mostly automatically. —cog2qzh)]}, (A1)
From the real part, the wave number with maximal growth

rateq,, and the maximal growth rate, , itself can be easily |, =[cosh2q;h) - cog2q,h)][q, sinh(2q;h)
determined. It can be done for any combination of material ~ ~

parameters and for any thickness of the layer. This is the —qysin(2gzh)], (A2)

strength of the presented analytical method which covers the N B N B
entire parameter space between the previously studied N;={q;sinh(2q;h)-+q,sin(2g,h)—q cothgh)
asymptotic casef9,11]. It therefore allows us to study the

transition from one limit to the other. Such a transition is X[ cost(2q,h) —cog 2g,h) 1}2+{q; sinh(2g;h)
exemplarily illustrated for an infinitely thick layer with vis- ~ o~ 2
cosities varying between zero and infinity. ~Gasin(2g2h)}, (A3)

For magnetic fluids of infinite depth it is shown that ear- L ~ ~ o _
lier qualitative observations of constant wave numbers aboveRe =[50+ 20(q5 —05) + 01— 60305+ d5][d; sinh(2q;h)
the critical magnetic field2,6] cannot be explained by the ~ .~ go o~ e~ ey
result of an asymptotic analydi8]. The analysis if9] does +028iN(202h) | - [40°0102+ 40102~ 40103]
not cover the features of the experimental fluids. In order to ~ ~ T s
apply a theory, where the field is instantly present, a jump- *[az sinf2d:h) = gusin(2gzh) ], (Ad)
like increase of the field in the experiments is essential. g ~ ~ g - g~ ~
Therefore, the results for a continuously increased fi2)6] 12=[49°0192+ 40702~ 40:93][ g1 sinh(2q;h)
are inappropriate for a comparison with such a theory. Fur- ~ o~ 2 2~0 =\ =4 =72
thermore, we have demonstrated that the transient pattern is T 028in(2020) ]+ [597+297(91—a2) + 4~ 6019,
the _most suitabl_e one to be compared to the linear thgory. +ag][az sinh(2G;h) — qsin(29,h)], (A5)
Taking all these into account, we are able to observe a linear
increase of the wave number of maximal growth with in-
creasing magnetic induction. This linear increase is quantita-
tively confirmed by the linear theory. o _ _ _

An increasing wave number with increasing field was also  Rs=d tani(gh)[69%(q5—93) + g%+ 01— 60505+ 3],

N,=cosh2q,h) — cog2q,h), (AB)

observed in the corresponding electrical setup where a liquid (A7)
metal is subjected to a normal electric fidl@i6], but this

result is based only on a qualitative observation. The authors |3=qtanh(qh)[120%q,0,+ 4G50, 40,93],  (A8)
emphasize as well the importance of a fast buildup of the

field.

N2 cinh ~ A St Ned N s
It is very attractive to test in further experiments whether Ry=4q" sinh(q,h)cosah)[q1(a"+ 91~ 03) ~ 20195

the predicted generic behavior of the maximal growth rate 2 ~ TR R e N o
can be confirmed in the weakly nonlinear regime. As an +4q° cosq;h)sin(azh)[ d2(9”+ 91— g3) + 20102,
expected outcomey, ¢, Should start to grow like a square (A9)
root with increasing supercritical induction. Furthermore, it

remains to be seen whether the linear increase of the wave

number of the linearly most unstable pattern lasts in the final 1 ,=4q? sinh(q;h)cogq,h)[0,(q+q5—q3) + 203q,]
hexagonal pattern. A confirmation would mean that also the

wave number of the final pattern varies if the induction un- —492coshq;h)sin(q,h)[q1(9%+ 92— q3) — 29,931,
dergoes gumplikeincrease. We point out that forantinu-
ousincrease of the induction, the behavior of the wave num- (A10)

ber for both the transient and the final pattern remains to be ~ _
elucidated. N,=coshgh)[costf(q;h)—cog(g,h)].  (All)
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In Egs.(A1)—(All) the shorthands a4 ,  lo[singg 7 Jw|2cod g, Y+ 2k
02= \/4< g+ ) + 2 > )
(A13)
- _4\/ ( ) |w|sin goo>2 |w|?cog ¢, 5(1,04— 2k77> were used where
a:=\/ 4| g°+ + 5 co ,
v v 2
—|w|coseg
(A12) Y= arctanm + const. (Al14)
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