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Wave number of maximal growth in viscous magnetic fluids of arbitrary depth
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An analytical method within the frame of linear stability theory is presented for the normal field instability
in magnetic fluids. It allows us to calculate the maximal growth rate and the corresponding wave number for
any combination of thickness and viscosity of the fluid. Applying this method to magnetic fluids of finite depth,
these results are quantitatively compared to the wave number of the transient pattern observed experimentally
after a jumplike increase of the field. The wave number grows linearly with increasing induction where the
theoretical and the experimental data agree well. Thereby, a long-standing controversy about the behavior of
the wave number above the critical magnetic field is tackled.

PACS number~s!: 47.20.Ma, 75.50.Mm
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I. INTRODUCTION

Spontaneous pattern formation from a homogene
ground state has been studied extensively in many nonli
dissipative systems. Among these systems, magnetic fl
have experienced a renewed interest in recent years du
their technological importance@1#. The most striking phe-
nomenon of pattern formation in magnetic fluids is t
Rosensweig or normal field instability@2–5#. Above a
thresholdBc of the induction, the initially flat surface exhib
its a stationary hexagonal pattern of peaks. Typically, p
terns are characterized by a wave vectorq whose absolute
value gives the wave numberq5uqu. In contrast to many
other systems, a comprehensivequantitativetheoretical and
experimental analysis of the dependence of the wave num
on the strength of the magnetic field is lacking for the norm
field instability. There are few but contradictory experime
tal observations. In experiments where the field is increa
continuously, there are reports about constant@2,6# as well as
about varying wave numbers@7# as the induction is increase
beyond the critical valueBc . Notably, all these observation
are of entirelyqualitativecharacter@8#.

A first theoretical analysis leading to constant wave nu
bers of maximal growth was presented in@9#. The general
dispersion relation for surface waves on a magnetic fluid
infinite thickness was analyzed for two asymptotic regim
for the inviscid regime and for the viscous-dominated
gime. The main result for the latter regime was that tak
into account viscous effects, the wave number of maxim
growth is the same at andbeyondthe critical induction. As
will be shown below, this argument is rather misleading b
cause realistic fluid properties are not covered by such
asymptotic analysis. The two asymptotic regimes in@9# were
combined with very thin as well as very thick layers of ma
netic fluid and the resulting four regimes were analyzed
@11#. In three regimes, a nonconstant wave number of m
mal growth was found.

All qualitative observations in@2,6,7# refer to the final
arrangement of peaks. The final stable pattern, resulting f
nonlinear interactions, does not generally correspond to
PRE 611063-651X/2000/61~5!/5528~12!/$15.00
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most unstablelinear pattern. Such a pattern should gro
with the maximal growth rate and should display the cor
sponding wave number. Since both quantities are calcula
by the linear theory, the most unstable linear pattern ha
be detected and measured experimentally for a meanin
comparison between theory and experiment. No meas
ments of the most linear unstable pattern have yet been
dertaken.

Motivated by this puzzling situation, the paper present
quantitative theoretical analysis of the wave number wi
maximal growth rate for any combination of fluid param
eters. Experimental measurements of the most linear
stable pattern are conducted and the data compared with
theoretical results. The system and the relevant equation
the problem are displayed in the next section. Based on
dispersion relation from a linear stability analysis, an analy
cal method is presented to calculateqm and the maximal
growth ratevm for any combination of material parameter
The details of the method are explained for a magnetic fl
of infinite thickness and the results are compared with p
vious asymptotic results~Sec. III!. The method is also ap
plied to magnetic fluids of finite thickness~Sec. IV!, which
allows a quantitative comparison with the experimental d
~Sec. V!. In the final section, the results are summarized a
further prospects are outlined.

II. SYSTEM AND EQUATIONS OF THE PROBLEM

A horizontally unbounded layer of an incompressib
nonconducting, and viscous magnetic fluid of thicknessh
and constant densityr is considered. The fluid is bounde
from below (z52h) by the bottom of a container made of
magnetically impermeable material and has a free surf
described byz5z(x,y,t) with air above. The electrically
insulating fluid justifies the stationary form of the Maxwe
equations, which reduce to the Laplace equation for the m
netic potentialsF ( i ) in each of the three different regions
~Upper indices denote the considered medium: 1 air, 2 m
netic fluid, and 3 container.! It is assumed that the magnet
zation M (2) of the magnetic fluid depends linearly on th
5528 ©2000 The American Physical Society
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PRE 61 5529WAVE NUMBER OF MAXIMAL GROWTH IN VISCOUS . . .
applied magnetic fieldH(2), M (2)5(m r21)H(2), wherem r
is the relative permeability of the fluid. The system is go
erned by the equation of continuity and the Navier-Sto
equations for the magnetic fluid,

div v50, ~2.1!

] tv1~v grad!v52
1

r
grad~p1ps!1nDv1g, ~2.2!

and the Laplace equation in each medium,

DF ( i )50. ~2.3!

The quantities without an upper index refer to the magn
fluid with the velocity fieldv5(u,v,w), the kinematic vis-
cosityn, the pressurep, and the acceleration due to gravityg.
The first three terms on the right-hand side of Eq.~2.2! result
from (1/r) divTJ (2), where the components of the stress te
sor TJ (2) read@3#

Ti j
(2)5H 2p2m0E

0

H

~M2r]rM !dH82m0

H2

2 J d i j

1HiBj1rn~] iv j1] jv i !. ~2.4!

The magnetostrictive pressure is given byps5
2m0*0

Hr]rMdH8. M, H, andB denote the absolute value o
the magnetization, the magnetic field, and the inductionB in
the fluid. The governing equations have to be supplemen
by the appropriate boundary conditions, which are the co
nuity of the normal~tangential! component of the induction
~magnetic field! at the top and bottom interface,

n•~B(1)2B(2)!50, n3~H(1)2H(2)!50 atz5z,
~2.5!

n•~B(2)2B(3)!50, n3~H(2)2H(3)!50 atz52h,
~2.6!

the no-slip condition for the velocity at the bottom of th
container,

v5]zw50 atz52h, ~2.7!

the kinematic boundary condition at the free surface,

w5] tz1~v grad!z atz5z, ~2.8!

and the continuity of the stress tensor across the free sur

ni~Ti j
(1)2Ti j

(2)!52sKnj atz5z. ~2.9!

The surface tension between the magnetic fluid and a
denoted bys, the curvature of the surface byK5div n, and
the unit vector normal to the surface by

n5
grad@z2z~x,y,t !#

ugrad@z2z~x,y,t !#u
5

~2]xz,2]yz,1!

A11~]xz!21~]yz!2
.

~2.10!

Since the density of air can be neglected with respect to
density of the magnetic fluid andM (1)50 holds, Eq.~2.9!
reduces to
-
s

ic

-

ed
i-

ce,

is

e

nj H 2p(1)1p1m0E
0

H

MdH81ps1
m0

2
Mn

2J
2rnni$] iv j1] jv i%52sKnj , ~2.11!

wherep(1) is the atmospheric pressure above the fluid lay
In a linear stability analysis, all small disturbances from t
basic state are analyzed into normal modes, i.e., they
proportional to exp@2i(vt)#. If Im~v!.0, initially small un-
dulations will grow exponentially and the originally horizon
tal surface is unstable. Due to this relation, it has been es
lished to denotev as a growth rate, which is in fact true onl
for its imaginary part.

Following the standard procedure, the linear stabil
analysis leads to the dispersion relation@11–13# ~all formu-
las in the references are equivalent to each other!

05
n2

q̃ coth~ q̃h!2q coth~qh!
H q̃@4q41~q21q̃2!2#coth~ q̃h!

2q@4q2q̃21~q21q̃2!2#tanh~qh!2
4q2q̃~q21q̃2!

cosh~qh!sinh~ q̃h!
J

1tanh~qh!Fgq1
s

r
q32

m0m rM
2

r
L~qh!q2G , ~2.12!

wherem0 is the permeability of free space,q̃5Aq22 iv/n,
and

L~qh!5
eqh~11m r !1e2qh~12m r !

eqh~11m r !
22e2qh~12m r !

2
. ~2.13!

The condition of marginal stability,v50, defines the thresh
old wherev changes its sign and therefore the normal fie
or Rosensweig instability appears. Withv50, one obtains
from Eq. ~2.12!

rg

s
1q22

~m r21!2B2

m0m rs
qL~qh!50. ~2.14!

In the limit of an infinitely thick (h→`) or an infinitely thin
(h→0) layer, respectively, the critical inductions are

Bc,`
2 5

2m0m r~m r11!Arsg

~m r21!2
, ~2.15!

Bc,0
2 5

4m0m r
2Arsg

~m r21!2
, ~2.16!

whereas in both limits the critical wave number is equal

qc5qc,`5qc,05Arg

s
. ~2.17!

The critical values apply to both viscous and inviscid ma
netic fluids due to the static character of the instabili
Based on the dispersion relation~2.12!, the details of the
proposed method are presented exemplarily for a magn
fluid of infinite thickness in the next section.



o

t
d

ce

i-

the

,

e
es
ly

y

y

at
at
-

of
m-

e a

e
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III. INFINITE LAYER OF MAGNETIC FLUID

The starting point of the analysis is the determination
the parameters for which the dispersion relation~2.12! for an
infinitely thick layer @9#

S 12
iv

2nq2D 2

1
1

4rn2q4 Frgq1sq32
~m r21!2

~m r11!m0m r
B2q2G

5A12
iv

nq2 ~3.1!

has solutions of purely imaginary growth rates. Such grow
rates characterize the viscous-dominated regime describe
qd@1 @9#, whered5A2n/v denotes the viscous depth@10#.
For v, the polar representationv5v11 iv25uvu(cosw0
1i sinw0) is chosen with

w05arctan
v2

v1
15

0 if n>0 andd.0

p if n>0 andd,0

p/2 if n>0 andd50

2p if n,0 andd.0

p if n,0 andd,0

3p/2 if n,0 andd50,

~3.2!

wheren ~d! denotes the numerator~denominator! of the ar-
gument of arctan. Dimensionless quantities were introdu
for all lengths, the induction, the time, and the viscosity,

l̄ 5qcl , B̄5
B

Bc,`
, ~3.3!

t̄ 5
g3/4r1/4

s1/4
t5

t

tc
, n̄5

g1/4r3/4

s3/4
n, ~3.4!

wheretc is the so-called capillary time. The real and imag
nary part of Eq.~3.1! now read

n̄22
uv̄u2~cos2w02sin2w0!

4q̄4
1

n̄uv̄usinw0

q̄2
1

q̄1q̄322B̄2q̄2

4q̄4

5 n̄2 A4 S 11
uv̄usinw0

n̄q̄2 D 2

1
uv̄u2cos2w0

n̄2q̄4

3cosS c12kp

2 D , k50,1, ~3.5!

2
uv̄u2sinw0cosw0

2q̄4
2

n̄uv̄ucosw0

q̄2

5 n̄2A4 S 11
uv̄usinw0

n̄q̄2 D 2

1
uv̄u2cos2w0

n̄2q̄4

3sinS c12kp

2 D , k50,1, ~3.6!

where
f

h
by

d

c5arctan
2uv̄ucosw0

n̄q̄21uv̄usinw0

1const ~3.7!

and k distinguishes between the two possible values of
complex root. The value of the constant in Eq.~3.7! follows
the rules of Eq.~3.2!. For a purely imaginary growth rate
v̄5 i v̄2 , w0 can take only the two valuesp/2 (v̄2.0) and
3p/2 (v̄2,0). In the former case, Eq.~3.6! is always ful-
filled, whereas in the latter case, Eq.~3.6! holds only if
n̄q̄2.uv̄u. For v̄5 i v̄2, Eq. ~3.5! reduces to

f 6~ q̄,uv̄u; n̄,B̄!ªS n̄6
uv̄u

2q̄2D 2

1
q̄1q̄322B̄2q̄2

4q̄4

2 n̄2 A4 4S 16
uv̄u

n̄q̄2D 2

cos~kp!50, ~3.8!

where the6 sign corresponds tov̄2:0. The parametersn̄
andB̄ determine the solution of this implicit equation for th
variablesq̄ and uv̄u. The solution gives these specific valu
of the viscosity for which either positive or negative pure
imaginary growth rates exist~see Fig. 1!. For a supercritical
induction ofB̄51.05 andq̄51, there exists a positive purel
imaginary growth rate forall viscosities (k50). Above a
critical viscosity, n̄c50.453, a negative purely imaginar
growth rate solves Eq.~3.8! as well. This critical viscosity
also gives the upper bound for the solution withk51. The
value of n̄c5 n̄c(q̄,B̄) increases with increasing induction
constantq̄ and decreases with increasing wave vectors
constantB̄. The critical viscosity is naturally zero at the on
set of the instability,n̄c(q̄51, B̄51)50.

Whereas Fig. 1 shows a situation where certain types
solutions of the dispersion relation exist, in Fig. 2 the co

FIG. 1. Purely imaginary growth ratev̄5 i v̄2 as a function of

the viscosity forq̄51. Fork50 ~solid lines! positive values ofv̄2

exist for all viscosities whereas negative ones exist only abov

critical viscosityn̄c50.453. Fork51 ~dashed line! the upper bound

for v̄5 i v̄2 is given by n̄c . The long-dashed line indicates th

condition n̄q̄25uv̄u for v̄2,0.
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plete solution of Eqs.~3.5! and ~3.6! for B̄51.05 and n̄
50.037 is plotted (k50). Around the critical wave numbe
q̄c51, a range of wave numbers exists with positive pur
imaginary growth rates~filled squares!, i.e., there is a band o
unstable wave vectors. All other growth rates have nega
imaginary parts~filled circles, filled diamonds, and filled tri
angles!. Therefore, the unstable wave vectors are related
the positive purely imaginary growth rates only. Focusing
this solution, the imaginary partv̄2 is shown in the vicinity
of q̄c for various strengths of the induction andn̄50.037
(n.6.431026 m2 s21) in Fig. 3. The chosen value of th

FIG. 2. Growth ratev̄5v̄11 i v̄2 as a function of the wave

numberq̄ for n̄50.037 andB̄51.05. The empty symbols (n, L,

s) show Re(v̄)5v̄1 and the filled symbols (m, l, d, j) dis-

play Im(v̄)5v̄2. A positive purely imaginary growth rate (j) ex-

ists only in the vicinity ofq̄51.
-
ds
he
th

-

y

e

to
n

viscosity characterizes typical magnetic fluids in experime
@7,14#. All three curves have a maximum in the growth ra

v̄m5 i v̄2,m at q̄m . One notes thatv̄2,m as well asq̄m are
monotonously increasing functions of the strength of the
percritical induction at constant viscosity.

In order to study the resulting behavior ofd̄q̄

5q̄A2n̄/uv̄u at q̄m , the details of the dependence ofv̄2,m

andq̄m on the fieldand the viscosity need to be known. Th
wave number with the maximal growth rate is defined

]v̄2 /]q̄5]uv̄u/]q̄50. Since uv̄u is given implicitly by

f 6(q̄,uv̄u; n̄,B̄)50, the maximal growth rate results from

FIG. 3. Positive purely imaginary growth rates as a function

the wave numberq̄ and the strength of the inductionB̄ for n̄
50.037, typically for magnetic fluids in experiments@7,14#. The

maximum is given byv̄2,m and q̄m , which both increase monoto

nously with B̄.
g~ q̄,uv̄u; n̄,B̄!ª
] f 1

]q̄
50

5256n̄5@12cos2~kp!#q̄8196n̄3q̄71„9n̄1128$2 n̄3B̄21@413 cos2~kp!#n̄4uv̄u%…q̄6

18~23n̄B̄214n̄3118n̄2uv̄u!q̄51$16@2029 cos2~kp!#n̄3uv̄u216n̄116n̄B̄419uv̄u

2192n̄2uv̄uB̄2%q̄418~6n̄2uv̄u16n̄uv̄u223uv̄uB̄22 n̄B̄2!q̄31~264n̄uv̄u2B̄2164n̄2uv̄u3

16uv̄u116uv̄uB̄41 n̄ !q̄218~2n̄uv̄u22uv̄uB̄2!q̄1uv̄u. ~3.9!
fts
The cross section of the solutions of Eqs.~3.8! and ~3.9!
gives uv̄mu and q̄m , which is shown for three different vis
cosities in Fig. 4. Besides a viscosity of real magnetic flui
two large viscosities (n̄50.4,2) were chosen to represent t
regime where the behavior of the fluid is dominated by
viscosity. For all three viscosities, the wave numberq̄m is not
constant, i.e., for finite viscositiesq̄m depends on the exter
nal control parameterB̄. With increasing viscosityq̄m varies
,

e

less with increasing induction, e.g.,Dq̄m51.68 for n̄

50.037 reduces toDq̄m50.29 for n̄52 at an induction dif-

ference ofDB̄50.5. For small viscosities,q̄m depends lin-

early onB̄ if B̄ is not too large. This linear dependence shi

towards higher values ofB̄ with increasing viscosity~com-

pare n̄50.037 and 0.4!. At the largest viscosity,n̄52, no

linear behavior can be observed for 1,B̄,1.5.
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The analysis reveals that only in the case of infinite
large viscosities~with respect to the viscosity of real mag
netic fluids! can a constant wave vector of maximal grow
q̄m51 be expected. Taking into account viscous effects d
not necessarily lead to a constantq̄m . For a better compari-
son with @9#, the value ofq̄d̄ at q̄m is calculated and is
plotted for the three viscosities chosen in Fig. 5. The gra
show clearly thatq̄md̄@1 holds only in the close vicinity of
the critical induction for large viscosities (n̄50.4,2) and in
the limit B̄51 (uv̄mu50, d̄5`) for realistic viscosities (n̄
50.037). Because 0.43,q̄md̄,1.08 for n̄50.037, realistic

FIG. 4. Maximal wave numberq̄m as a function of the super

critical inductionB̄ for different viscosities.q̄m is a monotonously

increasing function ofB̄ with the exceptionq̄m51 @9# in the case of
infinitely large viscosities~lower dot-dashed line!. In the limit of an

inviscid fluid ~upper dot-dashed line! the dependence ofq̄m on B̄ is

given by q̄m5(1/3)(2B̄21A4B̄423) @11#.

FIG. 5. Behaviour ofq̄d̄ at q̄m as a function of the induction fo

the viscositiesn̄50.037, 0.4, and 2. The conditionq̄md̄@1 holds

only in the close vicinity of the critical induction,B̄'1, for large

viscosities (n̄50.4,2) and in the limitB̄51 for realistic viscosities

( n̄50.037).
s

s

fluid properties are not covered by the other asymptotic
gime q̄md̄!1 analyzed in@9#. Therefore, the experimenta
observation in@2,6# cannot be explained by the result of a
asymptotic analysis which does not meet the features of
experimental fluids. By plotting the known analytical resu

in the inviscid regime,q̄m5(1/3)(2B̄21A4B̄423) @11#, re-
alistic magnetic fluids tend rather to the limitn̄→0 than to
the limit n̄→` ~see Fig. 4! as exploited in earlier studies@2#.
But for quantitativecomparisons in typical experimental se
ups, asymptotic analyzes@9,11# are insufficient.

IV. FINITE LAYER OF MAGNETIC FLUID

Since the experiments are performed with a vessel o
nite depth, the method presented in the preceding section
to be applied to magnetic fluids of finite thickness. With t
polar representation ofv, the real and imaginary part of th
dispersion relation~2.12! read

n2FR1

N1
S R2

N2
2R32

R4

N4
D1

I 1

N1
S I 2

N2
2I 32

I 4

N4
D G1tanh~qh!

3Fgq1
s

r
q32

~m r21!2B2

m0m rr
L~qh!q2G50, ~4.1!

n2FR1

N1
S I 2

N2
2I 32

I 4

N4
D1

I 1

N1
S 2

R2

N2
1R31

R4

N4
D G50.

~4.2!

The explicit form of the abbreviationsRi , I i , N1 , N2, and
N3 ( i 51, . . . ,4) is deferred to Appendix A. For purely
imaginary growth rates,v5 iv2, Eq. ~4.2! is fulfilled with-
out any restrictions forv2.0 as well as forv2,0 in con-
trast to the case of an infinitely thick layer. Only positiv
purely imaginary growth rates are of interest for comparis
with the experiment. Therefore, the functionf is now of the
form

f 1~q,v;n,B,h!

ª

n2@cosh~2q̃1h!21#

q̃1sinh~2q̃1h!2qcoth~qh!@cosh~2q̃1h!21#

3H q̃1sinh~2q̃1h!~5q412q2q̃1
21q̃1

4!

cosh~2q̃1h!21
2q tanh~qh!

3~5q2q̃1
21q41q̃1

4!2
4q2q̃1~q21q̃1

2!

cosh~qh!sinh~ q̃1h!
J

1tanh~qh!Fgq1
s

r
q32

~m r21!2B2

m0m rr
L~qh!q2G50,

~4.3!

where this implicit equation forq and v contains the addi-
tional parameterh. Figure 6 shows the solution for thre
different depths of the layer at a supercritical induction
B510631024 T. The used material parameters of the co
mercially available magnetic fluid EMG 901~Ferrofluidics
Corporation! are listed in Table I. The graphs show that t
wave number of maximal growthqm clearly varies less with
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PRE 61 5533WAVE NUMBER OF MAXIMAL GROWTH IN VISCOUS . . .
h than the maximal growth ratev2,m itself. Notably, the so-
lution for a layer of 2 mm thickness is already near the in
nite case illustrated byh5100 mm. Therefore, a filling with
h>1 cm of magnetic fluid can be considered as an infin
thick layer. To make such an estimate is an asset in the us
the complete equations. Because they cover the entire r
of thickness, 0<h<`, in extension to the asymptotic analy
sis h.0 andh.` in @11#.

To analyze the behavior ofv2,m andqm on B andh, the
maximal growth rate, given by] f 1 /]q50, has to be deter
mined. As the resulting implicit function is quite lengthy, w
do not give the explicit form here. The cross section of
solutions of Eq.~4.3! and] f 1 /]q50 leads tov2,m andqm .
Their dependence on the supercritical induction and
thickness of the layer is shown in Fig. 7. The wave num
of maximal growth increases linearly withB with the excep-
tion of B near the height-dependent critical valueBc,h . The
linear behavior is independent of the thickness of the la
and holds up to 30% aboveBc,h . The maximal growth rate
v2,m starts to grow like a square-root above the onset of
instability. This square-root behavior becomes less p
nounced with thinner layers.

Through the implicit character of the functions, an an
lytical expression cannot be given for the dependence ofqm
and v2,m on B and h. Alternatively, a two-parameter fit is
tested, which describes the generic behavior over a w

FIG. 6. Positive purely imaginary growth rates as a function
the wave numberq and the thickness of the layer at a consta
induction ofB510631024 T. Remarkably, the graph for a layer o
2 mm is already close to the limit of an infinite thick layer illu
trated by h5100 mm. Whereas the wave number of maxim
growth shows only a small variation, the maximal growth rate its
displays more distinct changes. Material parameters of the fl
EMG 901 are listed in Table I.

TABLE I. Material parameters of EMG 901 and EMG 909.

EMG 901 Source EMG 909 Source

m r 4.0 Ferrofluidics 1.8 Ferrofluidics
r (kg m23) 1.533103 @15# 1.023103 Ferrofluidics
n (m2 s21) 6.5431026 Ferrofluidics 5.8831026 Ferrofluidics
s (kg s22) 2.2731022 @15# 2.6531022 @7#
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range of layer thicknesses. An excellent agreement
achieved forh>4 mm by

q̂m53.26B̂20.09AB̂ for 0.001<B̂<0.2, ~4.4!

v̂2,m51.18AB̂12.9B̂ for 0.001<B̂<0.2 ~4.5!

~see Fig. 8!, where B̂5(B2Bc,h)/Bc,h , q̂m5(qm

2qc,h)/qc,h , and v̂2,m5v2,mtc denote the scaled distance
from the critical values. Forsmall B̂, the behavior ofq̂m is
only weakly nonlinear whereas the behavior ofv̂2,m is deter-
mined by the square-root term. A careful inspection of t
data reveals that forh52 mm ~filled circles!, small devia-
tions from the proposed fits appear:q̂m grows linearly over

f
t

l
f
id

FIG. 7. Maximal wave numberqm ~a! and maximal growth rate
v2,m ~b! as a function of the supercritical inductionB.Bc,h for
three different thicknesses.~a! qm increases linearly withB except
for B near the critical valueBc,h . The area of nonlinear behavio
shrinks with the shrinking thickness of the layer.~b! v2,m starts to
grow like a square root above the onset of the instability. T
square root behavior becomes less pronounced with thinner la
Material parameters of the fluid EMG 901 are listed in Table I.
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the entireB̂ region @see inset in Fig. 8~a!#. Thush52 mm
indicates the lower limit of the validity of Eqs.~4.4! and
~4.5!.

Since the fit covers the region of infinite thick layers, o
can expand Eqs.~3.8! and~3.9! for small B̂, q̂m , andv̂2,m .
Taking into account that the dimensionless viscosity is a
small for real magnetic fluids (n̄.0.0483 for EMG 901!, the
expansion leads to

q̂m5
6

n̄2
B̂22

18

n̄4
B̂3 for 0<B̂!

n̄2

6
, ~4.6!

v̂2,m5
2

n̄
B̂2

3

n̄3
B̂2 for 0<B̂!

n̄2

6
, ~4.7!

FIG. 8. Scaled maximal wave numberq̂m ~a! and scaled maxi-

mal growth ratev̂2,m ~b! as a function of the scaled supercritic

induction B̂. The data are calculated forh5100 mm (s), 50 mm
(*), 10 mm ~1!, 4 mm (h), and 2 mm (d). For h>4 mm, the

data are fitted byq̂m53.26B̂20.09AB̂ for q̂m @solid line~a!# and by

v̂2,m51.18AB̂12.9B̂ for v̂2,m @solid line ~b!#. Small deviations
from the generic behavior can be seen forh52 mm ~inset!. Mate-
rial parameters of the fluid EMG 901 are listed in Table I.
o

where the coefficients depend on the viscosity. Figure
shows the very good agreement between the numerical s
tion and the expansion forB̂! n̄2/6. The region where the
expansion holds extends with the square of the viscosity.
expansion~4.6! and ~4.7! and the scaling~4.4! and ~4.5!
show that the behavior ofq̂m and v̂2,m is entirely governed
by the two parameters viscosity and induction for not t
thin layers. The third parameterh has only a small effect in
this regime.

From the results shown in Fig. 7, one notes the hei
dependence ofBc andqc at the onset of the instability~see
also Figs. 4 and 5 in@12#!. This dependence forBc can be
exploited to measure the permeability of the magnetic fl
‘‘just in time’’ for the experiment. Since the quotient of th
two limits ~2.15! and ~2.16! depends onm r only,

FIG. 9. Scaled maximal wave numberq̂m ~a! and scaled maxi-

mal growth ratev̂2,m ~b! as a function of the scaled supercritic

induction B̂. The data are calculated forh5100 mm (s), 50 mm

(*), and 10 mm~1!. For B̂, n̄2/6, i.e.,B̂,431024 for EMG 901,

the agreement with the analytical resultsq̂m5(6/n̄2)B̂2

2(18/n̄4)B̂3 @solid line ~a!# and v̂2,m5(2/n̄)B̂2(3/n̄3)B̂2 @solid
line ~b!# is very good. Material parameters of the fluid EMG 901 a
listed in Table I.
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Bc,0

Bc,`
5

2m r

m r11
, ~4.8!

the determination of the two limits ofBc offers a feasible
access tom r of the magnetic fluid. From Fig. 10 it can b
seen thatBc increases monotonously fromBc,` towardsBc,0
with decreasing layer thickness. Since the preparation
very thin layers is laborious and delicate, it would be des
able to shift the thin layer limit towards thicker films. Th
can be achieved by an increase of the surface tension
modified surface tension is accompanied by changes in
density and permeability of the fluid. But these changes
of a much smaller scale than those of the surface tens
The modified viscosity does not affect the determination
Bc,h . Therefore, the surface tension is changed wherea
other quantities remain constant. By increasing the surf
tension by a factor of 10~100!, Bc,0 may be measured fo
layers nearly one~two! orders of magnitude thicker than fo
a system with the original surface tension~see Fig. 10!.

Abou et al. analyzed the limit of thin films of magneti
fluid for vanishing and infinitely large viscosities. In bo
cases the analytical result@11#

q̄m5
1

4 S 3B̄2
~m r11!

2m r
1A9B̄4

~m r11!2

4m r
2 28D ~4.9!

is the same. Therefore, one can assume that the depend
of q̄m on B̄ is not influenced by the viscosity in the thin-film
limit. Since the present method allows us to calculateq̄m for
any combination of parameters, we are able to accompli
test of this assumption. As Fig. 11 shows, the behavior ofq̄m

on B̄ is indeed independent ofn. ~The tested viscosities cove
a range from 6.531028 m2 s21 to 231025 m2 s21.! The

FIG. 10. The critical inductionBc,h versus the thickness of th
layer h for three different surface tensions:s52.275
31022 kg s22 ~solid line!, s52.27531021 kg s22 ~dashed line!,
ands52.275 kg s22 ~long-dashed line!. By increasing the surface
tension by a factor of 10~100!, Bc,0 can be measured for layer
nearly one~two! orders of magnitude thicker than for a system w
the original surface tension. The remaining material parameter
the fluid EMG 901 are listed in Table I.
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variation of q̄m on the applied magnetic induction in thi
films was measured in earlier experiments where the m
netic fluid either was prepared at the bottom of a qua
chamber@16# or was laid on top of a denser fluid@17,18#. In
all three experiments, the spacing between thefinal arrange-
ment of peaks was measured in dependence of the ap
field and a nonlinear behavior was found.

V. MEASUREMENT, RESULTS, AND COMPARISON
WITH THEORY

In this section we report on experimental results of t
dependence of the maximal wave number on the superc
cal magnetic induction. First we present the experimen
setup, next we give a characteristic example of the pat
evolution. We continue with a description of the techniqu
applied to extract the wave number of the patterns. Fina
the experimental results are compared with the theoret
results of the preceding section, particularly the predic
growth of the maximal wave number.

Our experimental setup is shown in Fig. 12. A cylindric
Teflon® vessel with a diameter ofd512 cm and a depth o
2 mm is completely filled with magnetic fluid and situated
the center of a pair of Helmholtz coils. The experiments w
performed with EMG 909. The fluid is illuminated by 90 re
LEDs mounted on a ring of 30 cm diameter placed a
distance of 105 cm above the surface. A CCD camera
positioned at the center of the ring. By this construction
flat fluid surface reflects no light into the camera lens, ho
ever an inclined surface of proper angle will reflect light in
the camera@19#. The CCD camera is connected via
framegrabber to a Pentium 90 MHz PC and serves addit
ally as a fundamental clock for timing the experiment. In t
theoretical analysis the supercritical magnetic field is

of

FIG. 11. Maximal wave numberq̄m as a function of the super

critical induction B̄ of a thin film, h51 mm, for three different
viscosities: n56.531028 m2 s21 (s), n56.531026 m2 s21

(h), andn52.031025 m2 s21 (n). The numerical data show tha

the behavior ofq̄m on B̄ is independent ofn and it is given by

q̄m5(1/4)(c1Ac228) with c53B̄2(m r11)/(2m r) @11# ~solid
line!. The remaining material parameters of the fluid EMG 901
listed in Table I.
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sumed to be instantly present, thus in the experiment
magnetic field has to be increased jumplike from a subc
cal valueB0 to the desired valueB. For all measurementsB0
was fixed to 13331024 T. The jumplike increase of the field
is initiated by the computer. Its D/A converter is connect
via an amplifier~fug Elektronik GmbH! to the Helmholtz
coils ~Oswald Magnetfeldtechnik!. The magnetic system
cannot follow the control signal instantly; its relaxation tim
tB to a jumplike increase of the control signal depends on
jump height DB5B2B0. For a maximal jump height o
DB57031024 T, the relaxation time mounts up totB
580 ms. The other characteristic time scales of the sys
are the capillary time scale,tc.13 ms, and the viscous tim
scale,tn51/(qc

2n).450 ms.
For the empty Helmholtz coils, the spatial homogeneity

the magnetic field is better than61%. This grade is valid
within a cylinder of 10 cm in diameter and 14 cm in heig
oriented symmetrically around the center of the coils. T
Hall probes are positioned immediately under the Teflo®

dish. A Siemens Hall probe~KSY 13! serves to measure th
magnetic field during its jumplike increase, and is connec
to the digital voltmeter~Prema 6001!. For measuring a con
stant magnetic field and for calibration purposes we us
commercial Hall probe~Group3-LPT-231! connected to the
digital teslameter~DTM 141!. Both devices are controlled
via IEEE bus by the computer.

Next we give a characteristic example for the evolution
the surface pattern during a jumplike increase of the m
netic field. Figure 13~a! shows circular surface deformation
taken Dt5180 ms after the start of the experiment. The
surface deformations are first created at the edge of the d
because of the discontinuity of the magnetic induction
duced by the finite size of the container. The circular def
mation is fixed in space, and its amplitude grows during

FIG. 12. Scheme of the experimental setup.
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jumplike increase of the magnetic field. With increasing tim
more circular deformations evolve, approaching the cente
the dish @see Fig. 13~a!#. Onto this pattern, Rosenswei
peaks emerge out of the crests of the circular surface de
mation, as can be seen in Fig. 13~b!. After this transient
concentric arrangement, a hexagonal pattern of Rosens
peaks evolves@see Fig. 13~c!#.

The theoretical results stem from a linear theory wh
can determine correctly the critical values of the pattern
lected by the instability only at the threshold. Above t
threshold, a band of wave numbers will become unsta
where the mode with the largest growth rate is the m
unstable linear mode of the flat interface. Due to nonlin
effects, the final stable pattern does not generally corresp
to the most unstable linear mode, as shown here and in o
experiments@20#. Therefore, it has to be stressed that for t
comparison with the linear theory it is not the stable hexa
nal pattern but the most early stage of the pattern, namely
transient circular deformations, that is appropriate.

The wave number of the circular deformations is e
tracted from the pictures in the following way. First the a
gorithm scans the diagonals of the picture for the local ma
mum of the gray levels. Starting at the corners of t
pictures, it detects points which are situated at the edge
the Teflon® dish. Two of the edge points are marked b
white circles in the left part of Fig. 14~a!. From the full set of
four points, the algorithm calculates the center of the d
denoted by the half circle at the right part of Fig. 14~a!. In
order to control the precision of the algorithm, a white circ
with the proper radius of the dish is constructed around
detected center. In the next step, we calculate the radial

FIG. 14. Three steps of the picture processing to extract
wave number:~a! Reflections of circular surface deformations. Th
white line in the left upper and lower corner marks the calcula
edge of the dish, the circles on the edge serve to calculate the c
of the dish. ~b! Radial gray level distribution of~a!. ~c! Two-
dimensional representation of~b!.
ld.

FIG. 13. Series of snapshots of the principal pattern evolution of the magnetic fluid for a jump fromB0,Bc to B.Bc , illuminated from

above by a ring of LEDs. The pictures are takenDt5180 ms~a!, 280 ms~b!, 560 ms~c! after the start of the increase of the magnetic fie
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tribution of the gray values for all pixels within the circum
ference of the dish, as shown in Fig. 14~b!. For comparison,
Fig. 14~c! gives an artificial two-dimensional representati
of the gray-value distribution.

In all of the three pictures of Fig. 14, one can easily d
criminate three zones. In the innermost zone only small s
face undulations exist, which give rise to the unstructu
part of the gray-value distribution in Figs. 14~b! and 14~c!.
For larger radii one finds the area of circular surface de
mations which generates the biperiodic peak pattern in
distribution. The large peaks are correlated with the de
mation troughs and the small peaks with the deformat
crests. Finally the outermost zone includes the edge of
dish together with the first, edge-induced, deformation cr
For estimation of the wave number we discard the innerm
and outermost zones. The top part of the peaks in the rem
ing zone is fitted by a polynomial of second order. The a
erage distance of their maxima gives half of the desi
wavelength. For the rather small number of deformatio
available, the above presented method of wave number
culation turned out to be more stable and to give more p
cise results than the competing method of two-dimensio
Fourier transformation. Together with the picture, the m
mentarily magnetic induction has been recorded during
jumplike increase. This allows an exact relation of the e
tracted wave number to the instantly prevailing magnetic
duction.

Let us now focus on the experimental results displayed
Fig. 15, where the wave numberq is plotted versus the mag
netic inductionB. Each open square denotes the wave nu
ber extracted from a picture taken during a jumplike incre
of the magnetic field toB.Bc . The estimated maximal er
rors forq of 64.2% and forB of 60.9% are not plotted for
the purpose of clarity. The dashed line displays the theo
ical results for the listed material parameters of the magn
fluid EMG 909. Usingm r as a fit parameter gives the sol
line with m r.1.85. The fitted value form r differs by 2.8%
from the value given by Ferrofluidics, a deviation whic
is well within the tolerance of production specified by Fe
rofluidics. Obviously there is a rather good agreement

FIG. 15. Plot of the wave numberq versus the magnetic induc
tion B. The open squares give the experimental values, the da
line displays the theoretical results for the material parameter
EMG 909 listed in Table I. Usingm r as a fit parameter gives th
solid line.
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tween the experimental results and the theoretical graph
m r.1.85 marked by the solid line. Thelinear increase in the
appearing wave number, both in experiment and in theory
our main outcome.

Comparing the two theoretical curves in Fig. 15, an
crease ofm r results in a decrease of the critical magne
induction, whereas the critical wave number remains c
stant, as can be seen from Eqs.~2.15!–~2.17!. According to
Eq. ~2.17!, a constant critical wave number implies that t
density and the surface tension are constant. Therefore
refrain to consider them as additional fit parameters. As
be seen from Fig. 4, changes in the viscosity by an orde
magnitude are necessary to cause a relevant influence o
behavior of the wave number of maximal growth on t
induction. Therefore, changes in the viscosity due to sm
thermal fluctuations in the experiment can be neglected.

We find a linear wave-number dependence of the circu
surface deformations. This pattern is a more simple real
tion of the normal field instability than the familiar hexag
nal pattern of Rosensweig cusps. The latter one is obta
by a symmetrical superposition ofthree patterns of parallel
stripes with the wave vectors separated by 120°@21#. Obvi-
ously the circular surface deformations can be regarded
stripe pattern favored by the symmetry of the dish. As
consequence they appear first, before nonlinear interact
select in a later stage the hexagonal pattern. This situatio
well known from Rayleigh-Benard convection in cylindric
containers, where, due to side-wall induced convection, c
centric target patterns appear instead of hexagonal struct
Our observations agree in part with recent findings
Browaeyset al. @22#. They detected circular surface defo
mations for a constant, subcritical magnetic field of 0.79Hc .
In contrast to their experiment, we do not perform a perio
modulation, but a jumplike increase of the magnetic indu
tion. Thus we have no interference with additional wav
propagating onto the circular deformations. Therefore
measurement of the wave number, as described above, c
be realized.

The circular surface deformations have to be dist
guished from circular, meniscus-induced surface waves e
ted from the edge of lateral cell walls@23#. Here, the circular
deformations are induced by the discontinuity of the ma
netic induction at the edge of the container. The formation
a meniscus is eluded by a brimful filling of the dish and
the design of the vessel, which has a slope with respect to
horizontal of 15°, the contact angle between the magn
fluid and Teflon® .

Finite-size effects due to the finite size of the vessel
rather small in the experiment. Applying the arguments
Edwards and Fauve@24#, the width of the band of unstabl
wave numbers,Dq.4.6 cm21 for B518031024 T and h
52 mm, is much larger thanp/d.0.3 cm21, the wave-
number separation between the quantized modes of the
sel. Thus the influence of the vessel size can be negle
and the developing pattern is insensitive to the vessel si

For the experiments we have chosen a magnetic fluid w
a rather low value of magnetic permeabilitym r51.85, in
order to keep hysteresis effects small. Indeed, with our re
lution a hysteresis cannot be detected. Hysteresis stre
proves to increase monotonically with the permeability
the magnetic fluid@25#. Thus, the influence of higher perme

ed
of
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5538 PRE 61ADRIAN LANGE, BERT REIMANN, AND REINHARD RICHTER
ability on the wave number of maximal growth remains to
investigated experimentally in the context of a more comp
situation of a transition with large hysteresis.

VI. SUMMARY

By means of the polar representation of the complex
quencyv, the dispersion relation for surface waves on v
cous magnetic fluids is split into a real and an imagin
part. The parameters are determined for which pure im
nary solutionsv5 iv2 and v2.0 for both parts exist. For
these parameters the originally horizontal surface is unsta
because initially small undulations of the surface, prop
tional to exp(2ivt), grow exponentially. The imaginary pa
of the dispersion relation is fulfilled mostly automaticall
From the real part, the wave number with maximal grow
rateqm and the maximal growth ratev2,m itself can be easily
determined. It can be done for any combination of mate
parameters and for any thickness of the layer. This is
strength of the presented analytical method which covers
entire parameter space between the previously stu
asymptotic cases@9,11#. It therefore allows us to study th
transition from one limit to the other. Such a transition
exemplarily illustrated for an infinitely thick layer with vis
cosities varying between zero and infinity.

For magnetic fluids of infinite depth it is shown that ea
lier qualitative observations of constant wave numbers ab
the critical magnetic field@2,6# cannot be explained by th
result of an asymptotic analysis@9#. The analysis in@9# does
not cover the features of the experimental fluids. In orde
apply a theory, where the field is instantly present, a jum
like increase of the field in the experiments is essent
Therefore, the results for a continuously increased field@2,6#
are inappropriate for a comparison with such a theory. F
thermore, we have demonstrated that the transient patte
the most suitable one to be compared to the linear the
Taking all these into account, we are able to observe a lin
increase of the wave number of maximal growth with
creasing magnetic induction. This linear increase is quan
tively confirmed by the linear theory.

An increasing wave number with increasing field was a
observed in the corresponding electrical setup where a liq
metal is subjected to a normal electric field@26#, but this
result is based only on a qualitative observation. The auth
emphasize as well the importance of a fast buildup of
field.

It is very attractive to test in further experiments wheth
the predicted generic behavior of the maximal growth r
can be confirmed in the weakly nonlinear regime. As
expected outcome,vm,exp should start to grow like a squar
root with increasing supercritical induction. Furthermore
remains to be seen whether the linear increase of the w
number of the linearly most unstable pattern lasts in the fi
hexagonal pattern. A confirmation would mean that also
wave number of the final pattern varies if the induction u
dergoes ajumplike increase. We point out that for acontinu-
ousincrease of the induction, the behavior of the wave nu
ber for both the transient and the final pattern remains to
elucidated.
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APPENDIX

The abbreviations in Eqs.~4.1! and ~4.2! read explicitly

R15@cosh~2q̃1h!2cos~2q̃2h!#$q̃1 sinh~2q̃1h!

1q̃2 sin~2q̃2h!2q coth~qh!@cosh~2q̃1h!

2cos~2q̃2h!#%, ~A1!

I 15@cosh~2q̃1h!2cos~2q̃2h!#@ q̃2 sinh~2q̃1h!

2q̃1 sin~2q̃2h!#, ~A2!

N15$q̃1sinh~2q̃1h!1q̃2sin~2q̃2h!2q coth~qh!

3@cosh~2q̃1h!2cos~2q̃2h!#%21$q̃2 sinh~2q̃1h!

2q̃1sin~2q̃2h!%2, ~A3!

R25@5q212q2~ q̃1
22q̃2

2!1q̃1
426q̃1

2q̃2
21q̃2

4#@ q̃1 sinh~2q̃1h!

1q̃2sin~2q̃2h!#2@4q2q̃1q̃214q̃1
3q̃224q̃1q̃2

3#

3@ q̃2 sinh~2q̃1h!2q̃1sin~2q̃2h!#, ~A4!

I 25@4q2q̃1q̃214q̃1
3q̃224q̃1q̃2

3#@ q̃1 sinh~2q̃1h!

1q̃2sin~2q̃2h!#1@5q212q2~ q̃1
22q̃2

2!1q̃1
426q̃1

2q̃2
2

1q̃2
4#@ q̃2 sinh~2q̃1h!2q̃1sin~2q̃2h!#, ~A5!

N25cosh~2q̃1h!2cos~2q̃2h!, ~A6!

R35q tanh~qh!@6q2~ q̃1
22q̃2

2!1q41q̃1
426q̃1

2q̃2
21q̃2

4#,
~A7!

I 35q tanh~qh!@12q2q̃1q̃214q̃1
3q̃224q̃1q̃2

3#, ~A8!

R454q2 sinh~ q̃1h!cos~ q̃2h!@ q̃1~q21q̃1
22q̃2

2!22q̃1q̃2
2#

14q2 cosh~ q̃1h!sin~ q̃2h!@ q̃2~q21q̃1
22q̃2

2!12q̃1
2q̃2#,

~A9!

I 454q2 sinh~ q̃1h!cos~ q̃2h!@ q̃2~q21q̃1
22q̃2

2!12q̃1
2q̃2#

24q2cosh~ q̃1h!sin~ q̃2h!@ q̃1~q21q̃1
22q̃2

2!22q̃1q̃2
2#,

~A10!

N45cosh~qh!@cosh2~ q̃1h!2cos2~ q̃2h!#. ~A11!
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In Eqs.~A1!–~A11! the shorthands

q̃15A4 4S q21
uvusinw0

n D 2

1
uvu2cos2w0

n2 cosS c12kp

2 D ,

~A12!
y-

um

h

o

-

q̃25A4 4S q21
uvusinw0

n D 2

1
uvu2cos2w0

n2 sinS c12kp

2 D
~A13!

were used where

c5arctan
2uvucosw0

q2n1uvusinw0
1const. ~A14!
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