11 research outputs found

    Modélisation spectrale de détecteurs matriciels infrarouge HgCdTe : application à un micro-spectromètre

    Get PDF
    Due to the emergence of multi and hyperspectral imaging, there is an increasing demand for the control of the spectral response of infrared detectors. In this thesis, we propose an optical modelling approach of the spectral response of HgCdTe focal plane arrays. The aim is to better identify the physical origins of the oscillations observed on the spectral responses of the pixels belonging to the same detector array, as well as the cutoff wavelength disparities. These phenomena were not studied in the literature; though, they are partly responsible for the fixed pattern noise that limits the performance of the detectors. We propose a description that takes account of the physical interpretation of the observed phenomena (absorption, interference…), while allowing the extraction of the technological parameters (that are responsible for such non-uniformities) in the most independent way possible. The principle is based on the decomposition of the global behaviour of the detector, which may seem complex, as a multitude of elementary phenomena, which are easy to model. The study was applied to the particular case of a micro-spectrometer integrated to an infrared detection array. A sensitivity analysis of the proposed model was then performed to deduce the necessary precision on the technological parameters to obtain good quality spectra restitution. This approach can be generalized to other architectures detectors and other manufacturing technologies, provided that the optical properties of the materials involved are well known.Face à l’émergence de l’imagerie multi et hyperspectrale, il existe une demande croissante de connaissance fine de la réponse spectrale des détecteurs infrarouge. Dans ce travail de thèse, nous proposons une démarche de modélisation optique des réponses spectrales des plans focaux infrarouge HgCdTe. L’objectif est de mieux maîtriser les origines physiques des oscillations observées sur les réponses spectrales des pixels d’une matrice de détection, ainsi que des disparités de longueurs d’onde de coupure. Ces phénomènes étaient peu étudiés dans la littérature; pourtant, ils sont responsables en partie du bruit spatial fixe qui limite les performances des détecteurs. Nous proposons une description qui conserve l’interprétation physique des phénomènes observés (absorption, interférences,…), tout en permettant d’extraire les paramètres technologiques (responsables de ces non-uniformités) de la façon la plus indépendante possible. Le principe repose sur la décomposition du comportement global du détecteur, qui peut sembler complexe, en une multitude de briques élémentaires, simples à modéliser. L’étude a été appliquée au cas particulier d’un micro-spectromètre infrarouge intégré au plan de détection. Une analyse de sensibilité sur le modèle proposé a alors permis d’évaluer la précision nécessaire sur les paramètres technologique afin d’obtenir une bonne qualité de restitution de spectres. Cette démarche est généralisable à d’autres architectures de détecteurs et d’autres technologies de fabrication, à condition de maîtriser les propriétés optiques des matériaux mis en jeu

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Spectral modeling of HgCdTe infrared detector arrays : application to a micro-spectrometer

    No full text
    Face à l’émergence de l’imagerie multi et hyperspectrale, il existe une demande croissante de connaissance fine de la réponse spectrale des détecteurs infrarouge. Dans ce travail de thèse, nous proposons une démarche de modélisation optique des réponses spectrales des plans focaux infrarouge HgCdTe. L’objectif est de mieux maîtriser les origines physiques des oscillations observées sur les réponses spectrales des pixels d’une matrice de détection, ainsi que des disparités de longueurs d’onde de coupure. Ces phénomènes étaient peu étudiés dans la littérature; pourtant, ils sont responsables en partie du bruit spatial fixe qui limite les performances des détecteurs. Nous proposons une description qui conserve l’interprétation physique des phénomènes observés (absorption, interférences,…), tout en permettant d’extraire les paramètres technologiques (responsables de ces non-uniformités) de la façon la plus indépendante possible. Le principe repose sur la décomposition du comportement global du détecteur, qui peut sembler complexe, en une multitude de briques élémentaires, simples à modéliser. L’étude a été appliquée au cas particulier d’un micro-spectromètre infrarouge intégré au plan de détection. Une analyse de sensibilité sur le modèle proposé a alors permis d’évaluer la précision nécessaire sur les paramètres technologique afin d’obtenir une bonne qualité de restitution de spectres. Cette démarche est généralisable à d’autres architectures de détecteurs et d’autres technologies de fabrication, à condition de maîtriser les propriétés optiques des matériaux mis en jeu.Due to the emergence of multi and hyperspectral imaging, there is an increasing demand for the control of the spectral response of infrared detectors. In this thesis, we propose an optical modelling approach of the spectral response of HgCdTe focal plane arrays. The aim is to better identify the physical origins of the oscillations observed on the spectral responses of the pixels belonging to the same detector array, as well as the cutoff wavelength disparities. These phenomena were not studied in the literature; though, they are partly responsible for the fixed pattern noise that limits the performance of the detectors. We propose a description that takes account of the physical interpretation of the observed phenomena (absorption, interference…), while allowing the extraction of the technological parameters (that are responsible for such non-uniformities) in the most independent way possible. The principle is based on the decomposition of the global behaviour of the detector, which may seem complex, as a multitude of elementary phenomena, which are easy to model. The study was applied to the particular case of a micro-spectrometer integrated to an infrared detection array. A sensitivity analysis of the proposed model was then performed to deduce the necessary precision on the technological parameters to obtain good quality spectra restitution. This approach can be generalized to other architectures detectors and other manufacturing technologies, provided that the optical properties of the materials involved are well known

    Influence of the CdZnTe substrate thickness on the response of HgCdTe detectors under irradiation: modeling of the substrate luminescence

    No full text
    International audienceThe most extensively used infrared (IR) detectors in astrophysics are based on mercury cadmium telluride (MCT) technology: the MCT light-sensitive layer is grown on a cadmium zinc telluride (CZT) substrate. When launched on a satellite, these detectors are subjected to ionizing radiation from cosmic rays or solar flares (mainly protons) which degrade the detector performance. Indeed, an elevation of the detector background was noted under irradiation, which is believed to be associated with the luminescence of the CZT substrate. Complete removal of the substrate eliminates the problem, but it is a challenging step in the fabrication process. A deeper understanding of the response of IR detectors under irradiation, when the substrate is fully removed, will enable the optimization of substrate design for high-performance space-based scientific imaging. Here, the first results of proton irradiation modeling in MCT detectors, including energy deposition in the CZT substrate, are presented. The estimation of image pollution relies on GEANT4 (GEometry ANd Tracking 4) Monte Carlo simulations as well as analytical and numerical calculations of carrier transport inside the detector structure. In particular, recombination processes in the CZT substrate are taken into account to model the luminescence effect induced by proton irradiation. According to this model, considering published material properties, the diffusion of the carriers generated inside the CZT substrate toward the MCT layer is the main source of pollution. As the substrate thickness increases, more pixels are impacted by a proton impact on the IR. Consequently, depending on the targeted application, either partial or complete removal may be chosen

    Status of the development of 2k2 IR FPAs for astronomy and space in Europe

    No full text
    International audienceWe report on the development of short wave infrared (SWIR) imaging arrays for astronomy and space observation in Europe. LETI and Sofradir demonstrated 640x480 SWIR HgCdTe (MCT) arrays geared at low flux, low dark noise operation. Currently, we are developing 2048x2048 arrays mated to a newly developed ROIC. In parallel, the European Space Agency and the European Commission are funding the development and industrialization of 4 '' CdZnTe substrates and HgCdTe epitaxy. These large wafers are needed to achieve the necessary economies of scale and address the need for even larger arrays. HgCdTe SWIR detector performance at LETI/Sofradir is known from previous programs and will be discussed here. However, we will only be able to summarize the features and specifications of the new 2048x2048 detectors which are still at a prototype stage

    Développement d'un banc de spot scan cryogénique pour l'étude des détecteurs dans le moyen infrarouge

    No full text
    International audienceIn this article, we present a cryogenic spot scan bench in the 3-5 µm band currently under development in the ONERA MIRCOS platform. Initial tests have been carried out on a HgCdTe detector with a 30 µm pitch and improvements are underway to characterise smaller pixels.Dans cet article, nous présentons un banc de spot scan cryogénique dans la bande 3-5 µm actuellement en développement dans la plateforme MIRCOS de l'ONERA. Des premiers tests ont été réalisés sur un détecteur HgCdTe au pas de 30 µm et des améliorations sont en cours pour pouvoir caractériser de plus petits pixels

    An N-band test bench for the METIS coronagraphic masks

    Full text link
    METIS is one of the first three instruments for the ELT, Europe's next-generation ground-based telescope. It will offer imaging, coronagraphy and spectroscopy in the L, M and N bands for general-purpose science in astrophysics. Among its main science drivers are circumstellar disks and extrasolar planets observations, which requires demanding high contrast imaging techniques. In that framework, METIS will be equipped with state-of-the-art phase mask coronagraphs: Apodizing Phase Plate (APP) and Annular Grooves Phase Mask (AGPM). Manufacturing the AGPM coronagraphs is a complex process that requires performance assessment with specific testing before implementation into the instrument. At Department of Astrophysics (CEA Saclay, France), responsible for the testing of the N-band AGPMs, a previously available test bench with a telescope simulator and cryogenic facility has been upgraded to comply with the AGPM tests requirements. This paper presents these requirements and describes the test bench design adopted. Then, based on preliminary results, we discuss the original solutions that permitted to reach our goals.EPI

    Ariel: Enabling planetary science across light-years

    No full text
    Ariel Definition Study ReportAriel Definition Study Report, 147 pages. Reviewed by ESA Science Advisory Structure in November 2020. Original document available at: https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    corecore