16 research outputs found

    The impact of safety culture dimensions on workplace accidents: an application in the Moroccan automotive industry

    Get PDF
    Introduction: There is a general accord that safety culture is multidimensional. but limited research and publications are there about those dimensions. Almost one-third of the publications presenting safety culture definitions do not discuss the safety culture dimension nor the relationship between the safety culture dimensions and workplace accidents.  To further understand the factors influencing this correlation. it appeared appropriate in this situation to investigate the relationship between the safety culture dimensions and occupational accidents. This study aims to identify the safety culture dimensions in the automotive industry in Morocco and its relations with occupational accidents.   Methods: A study was done with 35 of the largest automotive companies in Morocco. the effects of Safety Culture dimensions on workplace accidents in the automotive industry were examined based on the literature review. and a measurement questionnaire that was created with a sample of numerous automotive workers for 2 months in the winter semester of November and December 2022. Results: The results highlight that the safety culture dimensions have a strong influence on avoiding accidents especially the safety culture's dimensions which present 40%. In addition, the COVID-19 period had a big impact on the number of occupational accidents in the automotive sector. 40.54% of these occupational accidents occurred between 2020 and 2022. Conclusion: Based on the results gained from the Questionnaire the common safety culture dimensions are employees’ attitudes or unsafe behaviors, lack of staff participation, and inadequate supervision

    Carcinome cutané de Merkel: apport de la TEP-TDM au18FDG

    Get PDF
    Le carcinome à cellules de Merkel (CCM) est une tumeur cutanée neuroendocrinerare d'évolution imprévisible et à grand potentiel métastatique. Ce néoplasme survient habituellement chez le sujet âgé au niveau des zones photo exposées. L'avidité constante du CCM au 18 fluorodésoxyglucose (FDG) justifie l'intérêt de la tomographie par émission de positon (TEP) au cours de cette pathologie. Toutefois, aucun consensus n'est établi à ce jour. Cette étude rapporte le cas d'une patiente de 25 ans suivie pour CCM métastatique, afin d'attirer l'attention sur cette tumeur particulière et d'illustrer l'intérêt de la TEP au 18 FDG dans la prise en charge de cette entité rare.Pan African Medical Journal 2016; 2

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Sandwich-Based Immunosensor for Dual-Mode Detection of Pathogenic F17–Positive <i>Escherichia coli</i> Strains

    No full text
    Bacterial diseases cause tremendous economic losses due to high morbidity and mortality in livestock animals. F17A protein, the major subunit of F17 fimbriae, is one of the most prevalent and crucial virulence factors among the pathogenic Escherichia coli (E. coli) isolated from diarrheic and septicemic animals of various species. Purification and detection of this protein is regarded as an interesting field of investigation due to its important role as a therapeutic target, such as vaccines, and as a diagnostic tool. In this context, polyclonal rabbit antibodies recognizing F17A protein (anti−F17A antibody) were developed and used for its detection. In fact, sandwich biosensor using anti−F17A/gold nanoparticles conjugates as capture probe and anti−F17A antibody labelled with horseradish peroxidase as signal amplification probe was developed for electrochemical and fluorescent detection of purified F17A protein and live F17–positive E. coli bacteria. Good specificity and sensitivity for detection of F17–positive E. coli strains were obtained. The dynamic range for the biosensor varies from 1 × 102 to 1 × 109 CFU·mL−1 (R2 = 0.998) and the detection limit (LOD) and the IC50 value were estimated to be 37 CFU·mL−1 and 75 CFU·mL−1, respectively

    The Effect of Whole-Body Electromyostimulation Program on Physical Performance and Selected Cardiometabolic Markers in Obese Young Females

    No full text
    International audienceBackground and Objectives: Whole-body electromyostimulation is under investigation as a potential aid for obesity-related health problems, supplementing a comprehensive, evidence-based obesity management strategy that includes lifestyle, diet, and exercise. The study investigated the impact of a whole-body electromyostimulation training program on physical performance and cardiometabolic markers in young obese females. Materials and Methods: Twenty-eight obese females, aged over 18 years with BMI over 30 and body fat over 28% and no underlying health conditions or medication, were divided into a whole-body electromyostimulation group (15 participants) and a control group (13 participants). The whole-body electromyostimulation program lasted 12 weeks, with two 20 min sessions weekly, using bipolar, rectangular current. Assessments pre and post intervention included body composition, blood pressure, lipid profile, C-reactive protein levels, maximal oxygen consumption, and jumping and sprint performance. Two-way ANOVA and t-tests were used for analysis. Results: Statistical analysis revealed significant (group × time) interactions for body composition, systolic blood pressure, maximal oxygen consumption, jumping and sprint performance, and plasma levels of lipids and C-reactive protein. Post hoc analyses for the whole-body electromyostimulation group indicated improvements in body composition indices (p &amp;amp;lt; 0.01), systolic blood pressure (p = 0.003), maximal oxygen consumption (p = 0.010), and both jumping and 30 m sprint performance (p &amp;amp;lt; 0.001 and p = 0.001, respectively) after the intervention. Furthermore, plasma levels of lipids (p &amp;amp;lt; 0.01) and C-reactive protein (p = 0.002) showed significant improvements following the training program. In contrast, no significant changes were observed for these variables in the control group. Conclusions: A 12-week whole-body electromyostimulation program significantly improved body composition (skeletal muscle mass, body mass index, body fat, and waist circumference), physical performance (maximal oxygen consumption, jumping and sprint performance), and certain cardiometabolic (plasma level of lipids) and inflammatory markers (C-reactive protein) in obese young women. Further research is needed to explore the broader effects of whole-body electromyostimulation on physical and cardiometabolic health

    Characterization of all the lipolytic activities in pancreatin and comparison with porcine and human pancreatic juices

    No full text
    International audiencePorcine pancreatic extracts (PPE), also named pancreatin, are commonly used as a global source of pancreatic enzymes for enzyme replacement therapy in patients with exocrine pancreatic insufficiency. They are considered as a good substitute of human pancreatic enzymes and they have become a material of choice for in vitro models of digestion. Nevertheless, while the global PPE contents in lipase, protease and amylase activities are well characterized, little is known about individual enzymes. Here we characterized the lipase, phospholipase, cholesterol esterase and galactolipase activities of PPE and compared them with those of porcine (PPJ) and human (HPJ) pancreatic juices. The phospholipase to lipase activity ratio was similar in PPJ and HPJ, but was 4-fold lower in PPE. The galactolipase and cholesterol esterase activities were found at lower levels in PPJ compared to HPJ, and they were further reduced in PPE. The enzymes known to display these activities in HPJ, pancreatic lipase-related protein 2 (PLRP2) and carboxylester hydrolase/bile salt-stimulated lipase (CEH/BSSL), were identified in PPJ using gel filtration experiments, SDS-PAGE and LC-MS/MS analysis. The galactolipase and cholesterol esterase activities of PPE indicated that PLRP2 and CEH/BSSL are still present at low levels in this enzyme preparation, but they were not detected by mass spectrometry. Besides differences between porcine and human enzymes, the lower levels of phospholipase, galactolipase and cholesterol esterase activities in PPE are probably due to some proteolysis occurring during the production process. In conclusion, PPE do not provide a full substitution of the lipolytic enzymes present in HPJ

    Nanobody-Based Sandwich Immunoassay for Pathogenic Escherichia coli F17 Strain Detection.

    Full text link
    peer reviewedRapid and specific detection of pathogenic bacteria in fecal samples is of critical importance for the diagnosis of neonatal diarrhea in veterinary clinics. Nanobodies are a promising tool for the treatment and diagnosis of infectious diseases due to their unique recognition properties. In this study, we report the design of a nanobody-based magnetofluorescent immunoassay for the sensitive detection of pathogenic Escherichia coli F17-positive strains (E. coli F17). For this, a camel was immunized with purified F17A protein from F17 fimbriae and a nanobody library was constructed by phage display. Two specific anti-F17A nanobodies (Nbs) were selected to design the bioassay. The first one (Nb1) was conjugated to magnetic beads (MBs) to form a complex capable of efficiently capturing the target bacteria. A second horseradish peroxidase (HRP)-conjugated nanobody (Nb4) was used for detection by oxidizing o-phenylenediamine (OPD) to fluorescent 2,3-diaminophenazine (DAP). Our results show that the immunoassay recognizes E. coli F17 with high specificity and sensitivity, with a detection limit of 1.8 CFU/mL in only 90 min. Furthermore, we showed that the immunoassay can be applied to fecal samples without pretreatment and remains stable for at least one month when stored at 4 °C

    Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion

    No full text
    International audienceIn this study, we evaluated vitamin D and mineral (iron, zinc, magnesium) transfer to the bolus aqueous phase during the digestion of meals with/without pulses. We performed in vitro digestions using test meals made either of i) beef and/or semolina and/or chickpeas, or of ii) potatoes supplemented or not with fibers, phytates, tannins and saponins. Chickpea presence led to a decrease in vitamin D bioaccessibility (-56%, p < 0.05) and mineral solubility (-28% for iron, p < 0.05) compared with meals with beef and/or semolina only. This effect was largely compensated for vitamin D by the fact that this vitamin was more stable during digestion of meals based on plant foods only than of meals with beef. Tannins were the most deleterious compounds for iron solubility, while phytates and tannins decreased vitamin D bioaccessibility. Agronomical or technical solutions to selectively decrease the amount in pulses of compounds that affect micronutrient bioavailability should be further explored

    Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion

    No full text
    International audienceIn this study, we evaluated vitamin D and mineral (iron, zinc, magnesium) transfer to the bolus aqueous phase during the digestion of meals with/without pulses. We performed in vitro digestions using test meals made either of i) beef and/or semolina and/or chickpeas, or of ii) potatoes supplemented or not with fibers, phytates, tannins and saponins. Chickpea presence led to a decrease in vitamin D bioaccessibility (-56%, p < 0.05) and mineral solubility (-28% for iron, p < 0.05) compared with meals with beef and/or semolina only. This effect was largely compensated for vitamin D by the fact that this vitamin was more stable during digestion of meals based on plant foods only than of meals with beef. Tannins were the most deleterious compounds for iron solubility, while phytates and tannins decreased vitamin D bioaccessibility. Agronomical or technical solutions to selectively decrease the amount in pulses of compounds that affect micronutrient bioavailability should be further explored

    Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion

    No full text
    International audienceIn this study, we evaluated vitamin D and mineral (iron, zinc, magnesium) transfer to the bolus aqueous phase during the digestion of meals with/without pulses. We performed in vitro digestions using test meals made either of i) beef and/or semolina and/or chickpeas, or of ii) potatoes supplemented or not with fibers, phytates, tannins and saponins. Chickpea presence led to a decrease in vitamin D bioaccessibility (-56%, p < 0.05) and mineral solubility (-28% for iron, p < 0.05) compared with meals with beef and/or semolina only. This effect was largely compensated for vitamin D by the fact that this vitamin was more stable during digestion of meals based on plant foods only than of meals with beef. Tannins were the most deleterious compounds for iron solubility, while phytates and tannins decreased vitamin D bioaccessibility. Agronomical or technical solutions to selectively decrease the amount in pulses of compounds that affect micronutrient bioavailability should be further explored
    corecore