24 research outputs found

    Effect of Saccadic Adaptation on Sequences of Saccades

    Get PDF
    Accuracy of saccadic eye movements is maintained thanks to adaptation mechanisms. The adaptive lengthening and shortening of reactive and voluntary saccades rely on partially separate neural substrates. Although in daily-life we mostly perform sequences of saccades, the effect of saccadic adaptation has been mainly evaluated on single saccades. Here, sequences of two saccades were recorded before and after adaptation of rightward saccades. In 4 separate sessions, reactive and voluntary saccades were adaptively shortened or lengthened. We found that the second saccade of the sequence always remained accurate and compensated for the adaptive changes of the first rightward saccade size. This finding suggests that adaptation loci are upstream of the site where the efference copy involved in sequence planning originates

    Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system

    Get PDF
    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    Spatial transfer of adaptation of scanning voluntary saccades in humans

    No full text
    International audienceThe properties and neural substrates of the adaptive mechanisms that maintain over time the accuracy of voluntary, internally triggered saccades are still poorly understood. Here, we used transfer tests to evaluate the spatial properties of adaptation of scanning voluntary saccades. We found that an adaptive reduction of the size of a horizontal rightward 71 saccade transferred to other saccades of a wide range of amplitudes and directions.This transfer decreased as tested saccades increasingly di¡ered in amplitude or direction from the trained saccade, being null for vertical and left-ward saccades. Voluntary saccade adaptation thus presents bounded, but large adaptation ¢elds, suggesting that at least part of the underlying neural substrate encodes saccades as vectors

    Adaptation after-effect for the different target durations and mask conditions.

    No full text
    <p>Mean gain changes for reactive saccades (black bars) and voluntary saccades (grey bars) calculated between the pre-adaptation and post-adaptation blocks. These gain changes are plotted as a function of target durations in the mask condition (grey background) and in the no-mask condition (white background). Error bars are SEMs. Significant differences of gain changes between the saccade categories, target durations and masking conditions are indicated by * (p<0.05), ** (p<0.01) and *** (p<0.001).</p
    corecore