20 research outputs found

    Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Get PDF
    يقدم هذا البحث, المتحكم التناسبي التكاملي التفاضلي الكسري الامثل اعتمادا على خوارزمية اسراب الطيور للسيطرة على تتبع المسار للانسان الالي ذو العجلات. حيث يتم تقليل مشكلة تتبع المسار مع إعطاء السرعة المرجعية المطلوبة للحصول على المسافة وانحراف زاوية يساوي الصفر، لتحقيق الهدف من تتبع المسار يتم استخدام اثنين من وحدات المتحكم التناسبي التكاملي التفاضلي الكسري للتحكم في السرعة والزاوية لتنفيذ سيطرة تتبع المسار.  تستخدم أساليب تخطيط وتتبع المسارات لإعطاء مسارات تتبع مختلفة. تم استخدام خوارزمية اسراب الطيور لإيجاد المعلمات المثلى لوحدات المتحكم التناسبي التكاملي التفاضلي الكسري. وتم محاكاة النماذج الحركية والحيوية للانسان الالي ذو العجلات لتتبع المسار المطلوب مع خوارزمية أسراب الطيور في برنامج المحاكاة  ماتلاب. وتبين نتائج المحاكاة أن  وحدات المتحكم التناسبي التكاملي التفاضلي الكسري الأمثل هي أكثر فعالية ولها أداء ديناميكي أفضل من الطرق التقليدية.This paper present an optimal Fractional Order PID (FOPID) controller based on Particle Swarm Optimization (PSO) for controlling the trajectory tracking of Wheeled Mobile Robot(WMR).The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods

    The control of permanent magnet synchronous motor drive based on the space vector pulse width modulation and fractional order PID controller

    Get PDF
    This study explains a new way to speed control for PMSMs based on the FOC and SVPWM techniques employed in the building of the permanent magnet synchronous motors (PMSMs). When it comes to current control, two inner and one outside feedback loops were used. Feedback control with FOPID controllers is used to optimize the performance of PMSM motor design. FOPID parameters were optimized using genetic algorithms in MATLAB/Simulink simulations. Good dynamic and static qualities are demonstrated through simulation results. There is also a comparison of PMSM PID and FOPID controllers included

    Monitoring corrosion in oil pipelines using non-destructive test

    Get PDF
    The age of the pipelines is a factor in increasing the potential risk to corrosion in pipelines hence reduces the safety of pipelines, and gets pipelines more likely to explosion or breakage. Thus, that will threaten the safety of individuals and the environment. According to corrosion is the main reason that threatens the pipeline. The danger is not limited to residents, but it could be worrisome if any the leak happened near the water sources. Thus, it will be difficult to address quickly, and requires significant costs could reach billions of dollars. Therefore, it is important to study the reasons that could be caused the pipeline explosion to avoided any effects could be happened, for example, in this paper we will focused on corrosion that happened in oil pipe depending on ultrasonic test methods (UT) to test sample of pipeline. Ultrasonic test is a test which is done by transfer a high frequency pulse through test object and receives a reflected echoes by analyzing the reflected waves which will help us to determine the thickness and other material properties

    Study on the effect of the substrate material type and thickness on the performance of the filtering antenna design

    Get PDF
    This article presents a new design of a four-pole microstrip filtering antenna. The filtering antenna consists of a bandpass filter, which has four resonators integrated to a monopole patch antenna. The filtering antenna is designed with a relatively high bandwidth of about 1.22 GHz to satisfy a high-speed data transmission. Three types of dielectric substrate materials were used for the design of the filtering antenna, which is RT/Duroid 5880, RO3003, and FR-4. The simulation results of the filtering antenna design, which are established on the three different dielectric substrate materials, are done by using Computer Simulation Technology (CST) software. Comparison results of the filtering antenna that is established on the three different dielectric substrate materials are done at a fixed substrate height and different substrate heights. The filtering antenna is designed at a center frequency f0 = 2.412 GHz, which is suitable for WLAN applications

    Design and optimization of microstrip filtering antenna with modified shaped slots and SIR filter to improve the impedance bandwidth

    Get PDF
    This paper presents a new compact microstrip filtering antenna with modified shaped slots to improve the impedance bandwidth. The proposed microstrip filtering antenna consists of three parts; the monopole radiating patch antenna, the SIR filter, and the feeding microstrip line. The design structure is achieved on one sided glass epoxy FR-4 substrate with dielectric constant ε_r = 4.4 and thickness of h = 1.6 mm. The design procedures of the proposed filtering antenna starts from the second order Chebyshev low pass filter prototype. The simulation results throughout this article are done by a computer simulation technology (CST) software. The simulated results have been achieved show good performance of S11-parameter and broad side antenna gain on +z-direction. This design has two transmission zeros at 5.4 GHz and 7.7 GHz, and bandwidth (B.W) of about 1.66 GHz so; it is suitable for high speed data communication. This design has good skirt selectivity

    Wavelet Neural Networks for Speed Control of BLDC Motor

    Get PDF
    In the recent years, researchers have sophisticated the synthesis of neural networks depending on the wavelet functions to build the wavelet neural networks (WNNs), where the wavelet function is utilized in the hidden layer as a sigmoid function instead of conventional sigmoid function that is utilized in artificial neural network. The WNN inherits the features of the wavelet function and the neural network (NN), such as self-learning, self-adapting, time-frequency location, robustness, and nonlinearity. Besides, the wavelet function theory guarantees that the WNN can simulate the nonlinear system precisely and rapidly. In this chapter, the WNN is used with PID controller to make a developed controller named WNN-PID controller. This controller will be utilized to control the speed of Brushless DC (BLDC) motor to get preferable performance than the traditional controller techniques. Besides, the particle swarm optimization (PSO) algorithm is utilized to optimize the parameters of the WNN-PID controller. The modification for this method of the WNN such as the recurrent wavelet neural network (RWNN) was included in this chapter. Simulation results for all the above methods are given and compared

    A New and Compact Wide-Band Microstrip Filter-Antenna Design for 2.4 GHz ISM Band and 4G Applications

    Get PDF
    A new and compact four-pole wide-band planar filter-antenna design is proposed in this article. The effect of the dielectric material type on the characteristics of the design is also investigated and presented. The filter-antenna structure is formed by a fourth-order planar band-pass filter (BPF) cascaded with a monopole microstrip antenna. The designed filter-antenna operates at a centre frequency of 2.4 GHz and has a relatively wide-band impedance bandwidth of about 1.22 GHz and a fractional bandwidth (FBW) of about 50%. The effects of three different types of substrate material, which are Rogers RT5880, Rogers RO3003, and FR-4, are investigated and presented using the same configuration. The filter-antenna design is simulated and optimised using computer simulation technology (CST) software and is fabricated and measured using a Rogers RT5880 substrate with a height (h) of 0.81 mm, a dielectric constant of 2.2, and a loss tangent of 0.0009. The structure is printed on a compact size of 0.32 λ0 × 0.30 λ0, where λ0 is the free-space wavelength at the centre frequency. A good agreement is obtained between the simulation and measurement performance. The designed filter-antenna with the achieved performance can find different applications for 2.4 GHz ISM band and 4G wireless communications

    Design of a Wide-Band Microstrip Filtering Antenna with Modified Shaped Slots and SIR Structure

    Get PDF
    This paper presents a new compact microstrip filtering antenna with modified shaped slots to improve the impedance bandwidth. The proposed microstrip filtering antenna consists of three parts: the monopole radiating patch antenna; the Stepped Impedance Resonator (SIR) filter; and the feeding microstrip line. The designed structure is achieved on one-sided glass epoxy FR-4 substrate with dielectric constant εr = 4.4 and thickness h = 1.6 mm. The design procedure of the proposed filtering antenna starts from the second-order Chebyshev low pass filter (LPF) prototype. The achieved results show an excellent performance of S11-parameter with broadside antenna gain on +z-direction. Having two transmission zeros at 5.4 GHz and 7.7 GHz, good skirt selectivity and a wide-band impedance bandwidth of about 1.66 GHz makes the designed filtering antenna suitable for high-speed data communications. Both the simulation results generated by using the Computer Simulation Technology (CST) software package and the measurement achieved by using a vector network analyzer (HP 8510C) and the anechoic chamber show good agreement

    Maximum Power Point Tracking for Photovoltaic System by Using Fuzzy Neural Network

    No full text
    The electrical energy from the sun can be extracted using solar photovoltaic (PV) modules. This energy can be maximized if the connected load resistance matches that of the PV panel. In search of the optimum matching between the PV and the load resistance, the maximum power point tracking (MPPT) technique offers considerable potential. This paper aims to show how the modelling process of an efficient PV system with a DC load can be achieved using a fuzzy neural network (FNN) controller. This is applied via an innovative methodology, which senses the irradiance and temperature of the PV panel and produces an optimal value of duty ration for the boost converter to obtain the MPPT. The coefficients of this controller have been refined based upon previous data sets using the irradiance and temperature. A gradient descent algorithm is employed to improve the parameters of the FNN controller to achieve an optimal response. The validity of the PV system using the MPPT technique based on the FNN controller is further demonstrated via a series of experimental tests at different ambient conditions. The simulation results show how the MPPT technique based on the FNN controller is more effective in maintaining the optimal power values compared with conventional techniques

    Detection and Diagnosis of Stator and Rotor Electrical Faults for Three-Phase Induction Motor via Wavelet Energy Approach

    No full text
    This paper presents a fault detection method in three-phase induction motors using Wavelet Packet Transform (WPT). The proposed algorithm takes a frame of samples from the three-phase supply current of an induction motor. The three phase current samples are then combined to generate a single current signal by computing the Root Mean Square (RMS) value of the three phase current samples at each time stamp. The resulting current samples are then divided into windows of 64 samples. Each resulting window of samples is then processed separately. The proposed algorithm uses two methods to create window samples, which are called non-overlapping window samples and moving/overlapping window samples. Non-overlapping window samples are created by simply dividing the current samples into windows of 64 samples, while the moving window samples are generated by taking the first 64 current samples, and then the consequent moving window samples are generated by moving the window across the current samples by one sample each time. The new window of samples consists of the last 63 samples of the previous window and one new sample. The overlapping method reduces the fault detection time to a single sample accuracy. However, it is computationally more expensive than the non-overlapping method and requires more computer memory. The resulting window samples are separately processed as follows: The proposed algorithm performs two level WPT on each resulting window samples, dividing its coefficients into its four wavelet subbands. Information in wavelet high frequency subbands is then used for fault detection and activating the trip signal to disconnect the motor from the power supply. The proposed algorithm was first implemented in the MATLAB platform, and the Entropy power Energy (EE) of the high frequency WPT subbands’ coefficients was used to determine the condition of the motor. If the induction motor is faulty, the algorithm proceeds to identify the type of the fault. An empirical setup of the proposed system was then implemented, and the proposed algorithm condition was tested under real, where different faults were practically induced to the induction motor. Experimental results confirmed the effectiveness of the proposed technique. To generalize the proposed method, the experiment was repeated on different types of induction motors with different working ages and with different power ratings. Experimental results show that the capability of the proposed method is independent of the types of motors used and their ages
    corecore