4 research outputs found

    Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution

    Full text link
    [EN] The drainage networks of our cities are currently experiencing a growing increase in runoff flows, caused mainly by the waterproofing of the soil and the effects of climate change. Consequently, networks originally designed correctly must endure floods with frequencies much higher than those considered in the design phase. The solution of such a problem is to improve the network. There are several ways to rehabilitate a network: conduit substitution as a former method or current methods such as storm tank installation or combined use of conduit substitution and storm tank installation. To find an optimal solution, deterministic or heuristic optimization methods are used. In this paper, a methodology for the rehabilitation of these drainage networks based on the combined use of the installation of storm tanks and the substitution of some conduits of the system is presented. For this, a cost-optimization method and a pseudo-genetic heuristic algorithm, whose efficiency has been validated in other fields, are applied. The Storm Water Management Model (SWMM) model for hydraulic analysis of drainage and sanitation networks is used. The methodology has been applied to a sector of the drainage network of the city of Bogota in Colombia, showing how the combined use of storm tanks and conduits leads to lower cost rehabilitation solutions.This work was supported by the Program Fondecyt Regular (Project 1180660) of the Comision Nacional de Investigación Científica y Tecnológica (Conicyt), Chile.Ngamalieu-Nengoue, UA.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Mora-Meliá, D.; Saldarriaga, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water. 11(3):515-537. https://doi.org/10.3390/w11030515S51553711

    Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

    Full text link
    [EN] In recent years, there has been an increase in the frequency of urban floods as a result of three determinant factors: the reduction in systems' capacity due to aging, a changing environment that has resulted in alterations in the hydrological cycle, and the reduction of the permeability of watersheds due to urban growth. Due to this, a question that every urban area must answer is: Are we ready to face these new challenges? The renovation of all the pipes that compose the drainage system is not a feasible solution, and, therefore, the use of new solutions is an increasing trend, leading to a new operational paradigm where water is stored in the system and released at a controlled rate. Hence, technologies, such as stormwater tanks, are being implemented in different cities. This research sought to understand how Climate Change would affect future precipitation, and based on the results, applied two different approaches to determine the optimal location and sizing of storage units, through the application of the Simulated Annealing and Pseudo-Genetic Algorithms. In this process, a strong component of computational modeling was applied in order to allow the optimization algorithms to efficiently reach near-optimal solutions. These approaches were tested in two stormwater networks at Bogota, Colombia, considering three different rainfall scenarios.This research was funded by MEXICHEM-PAVCO and COLCIENCIAS, grant number 565263339028Saldarriaga, J.; Salcedo, C.; Solarte, L.; Pulgarín, L.; Rivera, ML.; Camacho, M.; Iglesias Rey, PL.... (2020). Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water. 12(9):1-24. https://doi.org/10.3390/w12092491S124129Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106-118. doi:10.1016/j.atmosres.2011.04.003Padulano, R., Reder, A., & Rianna, G. (2019). An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrological Processes, 33(14), 2020-2036. doi:10.1002/hyp.13449Zeroual, A., Assani, A. A., Meddi, M., & Alkama, R. (2018). Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics, 52(1-2), 227-243. doi:10.1007/s00382-018-4128-0Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., … Nguyen, V.-T.-V. (2013). Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Science and Technology, 68(1), 16-28. doi:10.2166/wst.2013.251Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology, 52(5), 265-273. doi:10.2166/wst.2005.0142Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935Lee, E. H., & Kim, J. H. (2017). Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water, 9(4), 246. doi:10.3390/w9040246Kändler, N., Annus, I., Vassiljev, A., & Puust, R. (2019). Peak flow reduction from small catchments using smart inlets. Urban Water Journal, 17(7), 577-586. doi:10.1080/1573062x.2019.1611888Miao, Z.-T., Han, M., & Hashemi, S. (2019). The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China. Environmental Earth Sciences, 78(2). doi:10.1007/s12665-018-8016-zMartínez, C., Sanchez, A., Galindo, R., Mulugeta, A., Vojinovic, Z., & Galvis, A. (2018). Configuring Green Infrastructure for Urban Runoff and Pollutant Reduction Using an Optimal Number of Units. Water, 10(11), 1528. doi:10.3390/w10111528Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515Cimorelli, L., Morlando, F., Cozzolino, L., Covelli, C., Della Morte, R., & Pianese, D. (2016). Optimal Positioning and Sizing of Detention Tanks within Urban Drainage Networks. Journal of Irrigation and Drainage Engineering, 142(1), 04015028. doi:10.1061/(asce)ir.1943-4774.0000927Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., & Ocampo-Martinez, C. (2015). Modeling and real-time control of urban drainage systems: A review. Advances in Water Resources, 85, 120-132. doi:10.1016/j.advwatres.2015.08.007Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., … Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146-172. doi:10.1002/jame.20015Magi, B. I. (2015). Global Lightning Parameterization from CMIP5 Climate Model Output. Journal of Atmospheric and Oceanic Technology, 32(3), 434-452. doi:10.1175/jtech-d-13-00261.1Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., … Zadeh, N. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19), 6646-6665. doi:10.1175/jcli-d-11-00560.1Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., … Chauvin, F. (2012). The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9-10), 2091-2121. doi:10.1007/s00382-011-1259-yAckerley, D., & Dommenget, D. (2016). Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geoscientific Model Development, 9(6), 2077-2098. doi:10.5194/gmd-9-2077-2016Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491Javier Martínez-Solano, F., Iglesias-Rey, P. L., Mora Meliá, D., & Ribelles-Aguilar, J. V. (2018). Combining Skeletonization, Setpoint Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. Journal of Water Resources Planning and Management, 144(6), 04018023. doi:10.1061/(asce)wr.1943-5452.0000938Baek, H., Ryu, J., Oh, J., & Kim, T.-H. (2015). Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer – A case study in the Gunja subcatchment area, Korea. Expert Systems with Applications, 42(20), 6966-6975. doi:10.1016/j.eswa.2015.04.049McEnery, J. A., & Morris, C. D. (2011). Muskingum optimisation used for evaluation of regionalised stormwater detention. Journal of Flood Risk Management, 5(1), 49-61. doi:10.1111/j.1753-318x.2011.01125.xCunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Del Giudice, G., & Padulano, R. (2016). Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophysica, 64(5), 1755-1778. doi:10.1515/acgeo-2016-006

    El cultivo de la Caléndula (Calendula officinalis L.)

    No full text
    La información contenida en esta cartilla es el resultado parcial de experiencias técnicas investigativas obtenidas en actividades realizadas en el programa por el grupo de investigación en Plantas Medicinales, Aromáticas y Condimentarias de la Universidad Nacional de Colombia sede Palmira y de la Secretaría de Agricultura y Pesca de la Gobernación del Valle del Cauca. Los ensayos experimentales se realizaron en el Centro Experimental (CEUNP), laboratorios y con los estudiantes de pos y pre grado de la Universidad Nacional de Colombia sede Palmira. El propósito de esta catilla es ofrecer orientación técnica básica para todas aquellas personas que deseen cultivar esta planta medicinal, teniendo en cuenta sus propias condiciones agroclimáticas, edáficas, necesidades y cultura productiva. Es importante aclarar que en cada sistema productivo se aplicarán prácticas de manejo específicas

    Estimation of biomass and carbon stocks: the case of the Atlantic Forest

    Get PDF
    The main objective of this paper is to present and discuss the best methods to estimate live above ground biomass in the Atlantic Forest. The methods presented and conclusions are the products of a workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest". Aboveground biomass (AGB) in tropical forests is mainly contained in trees. Tree biomass is a function of wood volume, obtained from the diameter and height, architecture and wood density (dry weight per unit volume of fresh wood). It can be quantified by the direct (destructive) or indirect method where the biomass quantification is estimated using mathematical models. The allometric model can be site specific when elaborated to a particular ecosystem or general that can be used in different sites. For the Atlantic Forest, despite the importance of it, there are only two direct measurements of tree biomass, resulting in allometric models specific for this ecosystem. To select one or other of the available models in the literature to estimate AGB it is necessary take into account what is the main question to be answered and the ease with which it is possible to measure the independent variables in the model. Models that present more accurate estimates should be preferred. However, more simple models (those with one independent variable, usually DBH) can be used when the focus is monitoring the variation in carbon storage through the time. Our observations in the Atlantic Forest suggest that pan-tropical relations proposed by Chave et al. (2005) can be confidently used to estimated tree biomass across biomes as long as tree diameter (DBH), height, and wood density are accounted for in the model. In Atlantic Forest, we recommend the quantification of biomass of lianas, bamboo, palms, tree ferns and epiphytes, which are an important component in this ecosystem. This paper is an outcome of the workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest", that was conducted at Ubatuba, São Paulo, Brazil, between 4 and 8 December 2006 as part of the Brazilian project "Ombrophylus Dense Forest floristic composition, structure and function at the Núcleos Picinguaba and Santa Virginia of the Serra do Mar State Park", BIOTA Gradiente
    corecore