80 research outputs found

    Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain

    Get PDF
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies

    In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

    Get PDF
    Calcium (Ca+2) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca+2-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca+2 binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca+2 binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca+2 binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca+2/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca+2-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses postulated that Ca+2 is likely to be key player in Caenorhabditis cell signalling

    The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    Get PDF
    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake

    The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora

    Get PDF
    Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    EH and UIM: endocytosis and more

    No full text
    Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification. Here, we discuss two protein networks. One, the EH-network, is based on the Eps15 homology (EH) domain, which binds to peptides containing the sequence Asp-Pro-Phe (NPF). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation of intracellular trafficking routes. The ramifications of these two networks, however, appear to extend into many other aspects of cell physiology as well, such as transcriptional regulation, actin cytoskeleton remodeling, and DNA repair. The focus of this review is to integrate available knowledge of the EH- and mUb networks with predictions of genetic and physical interactions stemming from functional genomics approache

    EH and UIM: endocytosis and more

    No full text
    Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification. Here, we discuss two protein networks. One, the EH-network, is based on the Eps15 homology (EH) domain, which binds to peptides containing the sequence Asp-Pro-Phe (NPF). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation of intracellular trafficking routes. The ramifications of these two networks, however, appear to extend into many other aspects of cell physiology as well, such as transcriptional regulation, actin cytoskeleton remodeling, and DNA repair. The focus of this review is to integrate available knowledge of the EH- and mUb networks with predictions of genetic and physical interactions stemming from functional genomics approaches

    The EH network

    No full text
    The EH domain is an evolutionary conserved protein-protein interaction domain present in a growing number of proteins from yeast to mammals. Even though the domain was discovered just 5 years ago, a great deal has been learned regarding its three-dimensional structure and binding specificities. Moreover, a number of cellular ligands of the domain have been identified and demonstrated to define a complex network of protein-protein interactions in the eukaryotic cell. Interestingly, many of the EH-containing and EH-binding proteins display characteristics of endocytic "accessory" proteins, suggesting that the principal function of the EH network is to regulate various steps in endocytosis. In addition, recent evidence suggests that the EH network might work as an "integrator" of signals controlling cellular pathways as diverse as endocytosis, nucleocytosolic export, and ultimately cell proliferation

    Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation.

    No full text
    eps8, a recently identified tyrosine kinase substrate, has been shown to augment epidermal growth factor (EGF) responsiveness, implicating it in EGF receptor (EGFR)-mediated mitogenic signaling. We investigated the status of eps8 phosphorylation in normal and transformed cells and the role of eps8 in transformation. In NIH 3T3 cells overexpressing EGFR (NIH-EGFR), eps8 becomes rapidly phosphorylated upon EGF stimulation. At receptor-saturating doses of EGF, approximately 30% of the eps8 pool is tyrosine phosphorylated. Under physiological conditions of activation (i.e., at low receptor occupancy), corresponding to the 50% effective dose of EGF for mitogenesis, approximately 3 to 4% of the eps8 contains phosphotyrosine. In human tumor cell lines, we detected constitutive tyrosine phosphorylation of eps8, with a stoichiometry (approximately 5%) similar to that associated with potent mitogenic response in NIH-EGFR cells. Overexpression of eps8 was able to transform NIH 3T3 cells under limiting conditions of activation of the EGFR pathway. Concomitant tyrosine phosphorylation of eps8 and shc, but not of rasGAP, phospholipase C-gamma, and eps15, was frequently detected in tumor cells. This suggested that eps8 and shc might be part of a pathway which is preferentially selected in some tumors. Cooperation between these two transducers was further indicated by the finding of their in vivo association. This association was, at least in part, dependent on recognition of shc by the SH3 domain of eps8. Our results indicate that eps8 is physiologically part of the EGFR-activated signaling and that its alterations can contribute to the malignant phenotype
    corecore