1,386 research outputs found
Life Project for Adolescents: A Concept Analysis
It is essential to identify protective factors during adolescence due to its high incidence on risk behaviors. One of these factors is to have a life project that influences adolescent decision-making. The concept of life project has mainly been linked to teen pregnancy, depression and suicide; however, some authors agree that the concept is not clearly defined. Therefore, the objective of this paper is to define the concept of adolescent life project, using the methodology developed by Walker and Avant for concept analysis. The following steps were followed are: select a concept, determining the purpose of analysis, identifying all uses of the concept, determining the defining attributes, identifying a model, a borderline and a contrary cases, identifying history and consequences of the concept, and finally defining empirical referents. After the analysis, the final definition of the concept of adolescent life project includes the set of desires, future plans and actions necessary to accomplish it that influence the adolescent decisions. Knowing the importance of this concept when working with adolescents may guide development more effective interventions
The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies
Acessível em: www.ncbi.nlm.nih.gov/pmc/articles/PMC4423738/Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue - GLA p.(Arg118Cys) -, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands' close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease. The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for "rare" condition
Study of the Very High Energy emission of M87 through its broadband spectral energy distribution
The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster.Very High Energy (VHE, TeV) emission, from M87 has been detectedby Imaging Air Cherenkov Telescopes (IACTs ). Recently, marginal evidence forVHE long-term emission has also been observed by the High Altitude WaterCherenkov (HAWC) Observatory, a gamma ray and cosmic-ray detector array locatedin Puebla, Mexico. The mechanism that produces VHE emission in M87 remainsunclear. This emission is originated in its prominent jet, which has beenspatially resolved from radio to X-rays. In this paper, we constructed aspectral energy distribution from radio to gamma rays that is representative ofthe non-flaring activity of the source, and in order to explain the observedemission, we fit it with a lepto-hadronic emission model. We found that thismodel is able to explain non-flaring VHE emission of M87 as well as an orphanflare reported in 2005.<br
Searching for TeV Dark Matter in Irregular dwarf galaxies with HAWC Observatory
We present the results of dark matter (DM) searches in a sample of 31 dwarf
irregular (dIrr) galaxies within the field of view of the HAWC Observatory.
dIrr galaxies are DM dominated objects, which astrophysical gamma-ray emission
is estimated to be negligible with respect to the secondary gamma-ray flux
expected by annihilation or decay of Weakly Interacting Massive Particles
(WIMPs). While we do not see any statistically significant DM signal in dIrr
galaxies, we present the exclusion limits () for annihilation
cross-section and decay lifetime for WIMP candidates with masses between
and . Exclusion limits from dIrr galaxies are relevant and
complementary to benchmark dwarf Spheroidal (dSph) galaxies. In fact, dIrr
galaxies are targets kinematically different from benchmark dSph, preserving
the footprints of different evolution histories. We compare the limits from
dIrr galaxies to those from ultrafaint and classical dSph galaxies previously
observed with HAWC. We find that the contraints are comparable to the limits
from classical dSph galaxies and orders of magnitude weaker than
the ultrafaint dSph limits.Comment: 22 pages, 11 figures, 3 table
HAWC Study of Very-High-Energy -ray Spectrum of HAWC J1844-034
Recently, the region surrounding eHWC J1842-035 has been studied extensively
by gamma-ray observatories due to its extended emission reaching up to a few
hundred TeV and potential as a hadronic accelerator. In this work, we use 1,910
days of cumulative data from the High Altitude Water Cherenkov (HAWC)
observatory to carry out a dedicated systematic source search of the eHWC
J1842-035 region. During the search we have found three sources in the region,
namely, HAWC J1844-034, HAWC J1843-032, and HAWC J1846-025. We have identified
HAWC J1844-034 as the extended source that emits photons with energies up to
175 TeV. We compute the spectrum for HAWC J1844-034 and by comparing with the
observational results from other experiments, we have identified HESS
J1843-033, LHAASO J1843-0338, and TASG J1844-038 as very-high-energy gamma-ray
sources with a matching origin. Also, we present and use the multi-wavelength
data to fit the hadronic and leptonic particle spectra. We have identified four
pulsar candidates in the nearby region from which PSR J1844-0346 is found to be
the most likely candidate due to its proximity to HAWC J1844-034 and the
computed energy budget. We have also found SNR G28.6-0.1 as a potential
counterpart source of HAWC J1844-034 for which both leptonic and hadronic
scenarios are feasible.Comment: 13 pages, 9 figures, published in Ap
Galactic Gamma-Ray Diffuse Emission at TeV energies with HAWC Data
The Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays
(CRs), ultra-relativistic protons and electrons, interacting with gas and
electromagnetic radiation fields in the interstellar medium. Here we present
the analysis of TeV diffuse emission from a region of the Galactic Plane over
the range in longitude of , using data collected with
the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal and
latitudinal distributions of the TeV diffuse emission are shown. The radiation
spectrum is compatible with the spectrum of the emission arising from a CR
population with an "index" similar to that of the observed CRs. When comparing
with the \texttt{DRAGON} \textit{base model}, the HAWC GDE flux is higher by
about a factor of two. Unresolved sources such as pulsar wind nebulae and TeV
halos could explain the excess emission. Finally, deviations of the Galactic CR
flux from the locally measured CR flux may additionally explain the difference
between the predicted and measured diffuse fluxes
The TeV Sun Rises: Discovery of Gamma rays from the Quiescent Sun with HAWC
We report the first detection of a TeV gamma-ray flux from the solar disk
(6.3), based on 6.1 years of data from the High Altitude Water
Cherenkov (HAWC) observatory. The 0.5--2.6 TeV spectrum is well fit by a power
law, dN/dE = , with TeV cm s and . The flux
shows a strong indication of anticorrelation with solar activity. These results
extend the bright, hard GeV emission from the disk observed with Fermi-LAT,
seemingly due to hadronic Galactic cosmic rays showering on nuclei in the solar
atmosphere. However, current theoretical models are unable to explain the
details of how solar magnetic fields shape these interactions. HAWC's TeV
detection thus deepens the mysteries of the solar-disk emission.Comment: 15 pages, 8 figures including supplementary material. Accepted for
publication in Physical Review Letter
Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories
Ground-based gamma-ray astronomy is still a rather young field of research,with strong historical connections to particle physics. This is why mostobservations are conducted by experiments with proprietary data and analysissoftware, as it is usual in the particle physics field. However in recentyears, this paradigm has been slowly shifting towards the development and useof open-source data formats and tools, driven by upcoming observatories such asthe Cherenkov Telescope Array (CTA). In this context, a community-driven,shared data format (the gamma-astro-data-format or GADF) and analysis toolssuch as Gammapy and ctools have been developed. So far these efforts have beenled by the IACT community, leaving out other types of ground-based gamma-rayinstruments.We aim to show that the data from ground particle arrays, such asthe High-Altitude Water Cherenkov (HAWC) observatory, is also compatible withthe GADF and can thus be fully analysed using the related tools, in this caseGammapy. We reproduce several published HAWC results using Gammapy and dataproducts compliant with GADF standard. We also illustrate the capabilities ofthe shared format and tools by producing a joint fit of the Crab spectrumincluding data from six different gamma-ray experiments. We find excellentagreement with the reference results, a powerful check of both the publishedresults and the tools involved. The data from particle detector arrays such asthe HAWC observatory can be adapted to the GADF and thus analysed with Gammapy.A common data format and shared analysis tools allow multi-instrument jointanalysis and effective data sharing. Given the complementary nature of pointingand wide-field instruments, this synergy will be distinctly beneficial for thejoint scientific exploitation of future observatories such as the SouthernWide-field Gamma-ray Observatory and CTA.<br
Gamma-ray Emission from Classical Nova V392 Per: Measurements from Fermi and HAWC
This paper reports on the -ray properties of the 2018 Galactic novaV392 Per, spanning photon energies 0.1 GeV to 100 TeV by combiningobservations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory.In one of the most rapidly evolving -ray signals yet observed for anova, GeV rays with a power law spectrum with index were detected over eight days following V392 Per's optical maximum. HAWCobservations constrain the TeV -ray signal during this time and alsobefore and after. We observe no statistically significant evidence of TeV-ray emission from V392 Per, but present flux limits. Tests of theextension of the Fermi/LAT spectrum to energies above 5 TeV are disfavored by 2standard deviations (95\%) or more. We fit V392 Per's GeV rays withhadronic acceleration models, incorporating optical observations, and comparethe calculations with HAWC limits.<br
The High-Altitude Water Cherenkov (HAWC) Observatory in M\'exico: The Primary Detector
The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation
continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC
observatory and its analysis techniques build on experience of the Milagro
experiment in using ground-based water Cherenkov detectors for gamma-ray
astronomy. HAWC is located on the Sierra Negra volcano in M\'exico at an
elevation of 4100 meters above sea level. The completed HAWC observatory
principal detector (HAWC) consists of 300 closely spaced water Cherenkov
detectors, each equipped with four photomultiplier tubes to provide timing and
charge information to reconstruct the extensive air shower energy and arrival
direction. The HAWC observatory has been optimized to observe transient and
steady emission from sources of gamma rays within an energy range from several
hundred GeV to several hundred TeV. However, most of the air showers detected
are initiated by cosmic rays, allowing studies of cosmic rays also to be
performed. This paper describes the characteristics of the HAWC main array and
its hardware.Comment: Accepted for publications in Nuclear Inst. and Methods in Physics
Research, A (2023) 168253 (
https://www.sciencedirect.com/science/article/abs/pii/S0168900223002437 ); 39
pages, 14 Figure
- …