829 research outputs found

    Mitochondrial echoes of first settlement and genetic continuity in El Salvador

    Get PDF
    Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador. Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas. Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade

    High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia

    Get PDF
    BACKGROUND: Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. METHODOLOGY/PRINCIPAL FINDINGS: The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. CONCLUSIONS/SIGNIFICANCE: Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis

    Calidad de análisis retrospectivo de anomalías cromosómicas de tipo númericas en pacientes del hospital regional de alta especialidad del niño "Dr. Rodolfo Nieto Padrón"(2005-2015). L patrón de consumo alimentario en población del noreste de México

    Get PDF
    Las aneuploidías son anomalías cromosómicas más frecuente en el ser humano donde existe una diferencia en el número de par de cromosomas que tiene una célula. Puede haber ganancia o pérdida de cromosomas individuales, el mecanismo más frecuente es la no disyunción donde hay errores en el proceso de generación de gametos. Objetivos: Identificar las anomalías cromosómicas de tipo numéricas más frecuentes en el Hospital Regional de Alta Especialidad del Niño “Dr. Rodolfo Nieto Padrón en un periodo de diez año

    The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process

    Get PDF
    Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a “genetic sanctuary” during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    DNA aneuploidy as a topographic malignant transformation pattern in a pleomorphic adenoma of long-term evolution: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We present a case of long-term evolution of a submandibular pleomorphic adenoma. There is little information about topographic malignant transformation patterns of pleomorphic adenomas.</p> <p>Case presentation</p> <p>We extensively analyze a giant submandibular mixed tumor of 25-year evolution in a 57-year-old Caucasian woman. Deoxyribonucleic acid ploidy was evaluated in different superficial and deep areas using flow cytometry analysis and correlated with pathological and immunohistochemical characteristics. Superficial areas exhibited a typical histological pleomorphic adenoma pattern and were deoxyribonucleic acid diploid. Deep samples showed deoxyribonucleic acid aneuploidy, atypical histological benign features and expression of markers involved at an early-stage of malignant transformation, such as tumor protein 53 and antigen Ki67.</p> <p>Conclusion</p> <p>These findings revealed that deep tumor compartments may be involved in the initial stages of malignant transformation. Deoxyribonucleic acid ploidy analysis may provide an additional diagnosis tool and indicate 'uncertain' areas that require careful study to avoid diagnostic errors. Larger studies are needed to confirm our results and to evaluate the usefulness of the technique.</p

    Inter-team Coordination in Large-Scale Agile Development: A Case Study of Three Enabling Mechanisms

    Get PDF
    Agile methods are increasingly used in large development projects, with multiple development teams. A central question is then what is needed to coordinate feature teams efficiently. This study exam- ines three mechanisms for coordination: Shared mental models, commu- nication and trust in a large-scale development project with 12 feature teams running over a four-year period. We analyse the findings in rela- tion to suggested frameworks for large-scale agile development and a theory on coordination, and provide new recommendations for practice and theory.Inter-team Coordination in Large-Scale Agile Development: A Case Study of Three Enabling MechanismspublishedVersio

    Knowledge systems, health care teams, and clinical practice: a study of successful change

    Get PDF
    Clinical teams are of growing importance to healthcare delivery, but little is known about how teams learn and change their clinical practice. We examined how teams in three US hospitals succeeded in making significant practice improvements in the area of antimicrobial resistance. This was a qualitative cross-case study employing Soft Knowledge Systems as a conceptual framework. The purpose was to describe how teams produced, obtained, and used knowledge and information to bring about successful change. A purposeful sampling strategy was used to maximize variation between cases. Data were collected through interviews, archival document review, and direct observation. Individual case data were analyzed through a two-phase coding process followed by the cross-case analysis. Project teams varied in size and were multidisciplinary. Each project had more than one champion, only some of whom were physicians. Team members obtained relevant knowledge and information from multiple sources including the scientific literature, experts, external organizations, and their own experience. The success of these projects hinged on the teams' ability to blend scientific evidence, practical knowledge, and clinical data. Practice change was a longitudinal, iterative learning process during which teams continued to acquire, produce, and synthesize relevant knowledge and information and test different strategies until they found a workable solution to their problem. This study adds to our understanding of how teams learn and change, showing that innovation can take the form of an iterative, ongoing process in which bits of K&I are assembled from multiple sources into potential solutions that are then tested. It suggests that existing approaches to assessing the impact of continuing education activities may overlook significant contributions and more attention should be given to the role that practical knowledge plays in the change process in addition to scientific knowledge

    Feedback as intervention for team learning in virtual teams: the role of team cohesion and personality

    Get PDF
    Scholars and practitioners agree that virtual teams (VTs) have become commonplace in today's digital workplace. Relevant literature argues that learning constitutes a significant contributor to team member satisfaction and performance, and that, at least in face-to-face teams, team cohesion fosters team learning. Given the additional challenges VTs face, e.g. geographical dispersion, which are likely have a negative influence on cohesion, in this paper we shed light on the relationship between team cohesion and team learning. We adopted a quantitative approach and studied 54 VTs in our quest to understand the role of feedback in mediating this relationship and, more specifically, the role of personality traits in moderating the indirect effect of team feedback and guided reflection intervention on TL through team cohesion within the VT context. Our findings highlight the importance of considering aspects related to the team composition when devising intervention strategies for VTs, and provide empirical support for an interactionist model between personality and emergent states such as cohesion. Implications for theory and practice are also discussed
    corecore