2,985 research outputs found

    Whole body counter surveys of Miharu-town school children for four consecutive years after the Fukushima NPP accident

    Full text link
    Comprehensive whole-body counter surveys of Miharu town school children have been conducted for four consecutive years, in 2011-2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low 134/137^{134/137}Cs MDA of <50< 50 Bq/body, was used to screen the children shorter than 130 cm. No child in this group was found to have detectable level of radiocesium. Using the MDAs, upper limits of daily intake of radiocesium were estimated for each child. For those screened with the Babyscan, the upper intake limits were found to be <1 Bq/day for 137^{137}Cs. Analysis of a questionnaire filled out by the children's parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden.Comment: 11 pages, 10 figure

    Gene Expression Profiles of the Cochlea and Vestibular Endorgans: Localization and Function of Genes Causing Deafness

    Get PDF
    Objectives: We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. Methods: Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Honnepage using localization, expression, and distribution as keywords. Results: Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. Conclusions: The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.ArticleANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY. 124:6S-48S (2015)journal articl

    IKs Block and Spiral-Wave Reentry

    Get PDF
    We tested a hypothesis that an enhancement of IKs may play a pivotal role in ventricular proarrhythmia under high sympathetic activity. A 2-dimensional ventricular muscle layer was prepared in rabbit hearts, and action potential signals were analyzed by optical mapping. During constant stimulation, isoproterenol (ISP, 0.1 μM) significantly shortened action potential duration (APD); chromanol 293B (30 μM), a selective IKs-blocker, reversed the APD shortening. VTs induced in the presence of ISP lasted longer than in the control, and this was reversed by 293B. E-4031 (0.1 μM), a selective IKr-blocker, did not cause such reversal. Spiral-wave (SW) reentry with ISP was characterized by more stable rotation around a shorter functional block line (FBL) than in the control. After application of 293B, SW reentry was destabilized, and rotation around a longer FBL with prominent drift reappeared. The APD abbreviation by ISP close to the rotation center was more pronounced than in the periphery, leading to an opposite APD gradient (center < periphery) compared with controls. This effect was also reversed by 293B. In conclusion, β-adrenergic stimulation stabilizes SW reentry most likely though an enhancement of IKs. Blockade of IKs may be a promising therapeutic modality in prevention of ventricular tachyarrhythmias under high sympathetic activity

    Serum IgG4 as a biomarker reflecting pathophysiology and post-operative recurrence in chronic rhinosinusitis

    Get PDF
    Background: Type 2 chronic rhinosinusitis (CRS), especially eosinophilic CRS (ECRS), is an intractable upper airway inflammatory disease. Establishment of serum biomarkers reflecting the pathophysiology of CRS is desirable in a clinical setting. As IgG4 production is regulated by type 2 cytokines, we sought to determine whether serum IgG4 levels can be used as a biomarker for CRS. Methods: Association between the serum IgG4 levels and clinicopathological factors was analyzed in 336 CRS patients. Receiver operating characteristics (ROC) analysis was performed to determine the cut-off value of serum IgG4 levels that can be used to predict the post-operative recurrence. Results: Serum IgG4 levels were significantly higher in patients with moderate to severe ECRS versus those with non to mild ECRS. The levels were also significantly higher in asthmatic patients and patients exhibiting recurrence after surgery compared to controls. ROC analysis determined that the best cut-off value for the serum IgG4 level to predict the post-operative recurrence was 95 mg/dL. The corresponding sensitivity and specificity were 39.7% and 80.5%, respectively. When we combined the two cut-off values for the serum IgG4 and periostin, patients with high serum levels of either IgG4 or periostin exhibited a high post-operative recurrence (OR: 3.95) as compared to patients having low serum levels of both IgG4 and periostin. Conclusions: The present results demonstrate that the serum IgG4 level is associated with disease severity and post-operative course in CRS. In particular, the combination of serum IgG4 and periostin could be a novel biomarker that predicts post-operative recurrence

    カラダ トーク アルイワ カラダ ヒョウゲン ワークショップ ノ エイゾウ キロクカ ニツイテ

    Full text link
    ファイル名:karadatalk_dance_with_water_on_Concrete.wmv/m4v は、本論で参照される「コンクリートの水溜まり」映像ファイル名:karadatalk_dance_incense.wmv/m4v は、本論で参照される「お香踊り」映

    False negative results from using common PCR reagents

    Get PDF
    Background\ud The sensitivity of the PCR reaction makes it ideal for use when identifying potentially novel viral infections in human disease. Unfortunately, this same sensitivity also leaves this popular technique open to potential contamination with previously amplified PCR products, or "carry-over" contamination. PCR product carry-over contamination can be prevented with uracil-DNA-glycosylase (UNG), and it is for this reason that it is commonly included in many commercial PCR master-mixes. While testing the sensitivity of PCR assays to detect murine DNA contamination in human tissue samples, we inadvertently discovered that the use of this common PCR reagent may lead to the production of false-negative PCR results.\ud \ud Findings\ud We show here that contamination with minute quantities of UNG-digested PCR product or any negative control PCR reactions containing primer-dimers regardless of UNG presence can completely block amplification from as much as 60 ng of legitimate target DNA.\ud \ud Conclusions\ud These findings could potentially explain discrepant results from laboratories attempting to amplify MLV-related viruses including XMRV from human samples, as none of the published reports used internal-tube controls for amplification. The potential for false negative results needs to be considered and carefully controlled in PCR experiments, especially when the target copy number may be low - just as the potential for false positive results already is

    Receptor‐interacting protein (RIP) and Sirtuin‐3 (SIRT3) are on opposite sides of anoikis and tumorigenesis

    Full text link
    BACKGROUND: Regulating cross‐talk between anoikis and survival signaling pathways is crucial to regulating tissue processes and mitigating diseases like cancer. Previously, the authors demonstrated that anoikis activates a signaling pathway involving the CD95/Fas‐mediated signaling pathway that is regulated by receptor‐interacting protein (RIP), a kinase that shuttles between Fas‐mediated cell death and integrin/focal adhesion kinase (FAK)‐mediated survival pathways. Because it is known that sirtuin‐3 (SIRT3), a nicotinamide adenine dinucleotide‐dependent deacetylase, regulates cell survival, metabolism, and tumorigenesis, the authors hypothesized that SIRT3 may engage in cross‐talk with Fas/RIP/integrin/FAK survival‐death pathways in cancer cell systems. METHODS: Using immunohistochemical staining, immunoblotting, human tissue microarrays, and overexpression and suppression approaches in vitro and in vivo, the roles of RIP and SIRT3 were examined in oral squamous cell carcinoma (OSCC) anoikis resistance and tumorigenesis. RESULTS: RIP and SIRT3 had opposite expression profiles in OSCC cells and tissues. Stable suppression of RIP enhanced SIRT3 levels, whereas stable suppression of SIRT3 did not impact RIP levels in OSCC cells. The authors observed that, as OSCC cells became anoikis‐resistant, they formed multicellular aggregates or oraspheres in suspension conditions, and their expression of SIRT3 increased as their RIP expression decreased. Also, anoikis‐resistant OSCC cells with higher SIRT3 and low RIP expression induced an increased tumor burden and incidence in mice, unlike their adherent OSCC cell counterparts. Furthermore, stable suppression of SIRT3 inhibited anoikis resistance and reduced tumor incidence. CONCLUSIONS: The current results indicted that RIP is a likely upstream, negative regulator of SIRT3 in anoikis resistance, and an anoikis‐resistant orasphere phenotype defined by higher SIRT3 and low RIP expression contributes to a more aggressive phenotype in OSCC development. Cancer 2012. © 2012 American Cancer Society. An anoikis‐resistant phenotype defined by higher sirtuin‐3 (SIRT3) expression and lower receptor‐interacting protein (RIP) expression contributes to a more aggressive phenotype in the development of oral squamous cell carcinoma. Furthermore, stable suppression of SIRT3 inhibits anoikis resistance, blocks orasphere formation, and reduces tumor incidence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94476/1/27655_ftp.pd
    corecore