13 research outputs found

    The evolution of humoral immune responses to past and novel influenza virus strains gives evidence for antigenic seniority

    Get PDF
    The high genetic and antigenic variability of influenza virus and the repeated exposures of individuals to the virus over time account for the human immune responses toward this pathogen to continuously evolve during the lifespan of an individual. Influenza-specific immune memory to past strains has been shown to affect the immune responses to subsequent influenza strains and in turn to be changed itself through the new virus encounter. However, exactly how and to what extent this happens remains unclear. Here we studied pre-existing immunity against influenza A virus (IAV) by assessing IAV binding (IgG), neutralizing, and neuraminidase-specific antibodies to 5 different IAV strains in 180 subjects from 3 different age cohorts, adolescents, adults, and elderly, over a 5-year time span. In each age cohort, the highest neutralizing antibody titers were seen for a virus strain that circulated early in their life but the highest increase in titer was found for the most recent virus strains. In contrast, the highest IgG titers were seen against recent virus strains but the biggest increase in titer occurred against older strains. Significant increases in neutralizing antibody titers against a newly encountered virus strain were observed in all age cohorts demonstrating that pre-existing immunity did not hamper antibody induction. Our results indicate that the evolution of influenza-specific humoral immunity differs for rather cross-reactive virus-binding antibodies and more strain-specific neutralizing antibodies. Nevertheless, in general, our observations lend support to the antigenic seniority theory according to which the antibody response to influenza is broadened with each virus encounter, with the earliest encountered strain taking in the most senior and thus dominant position.publishedVersio

    Removal of Cr(III) and Ni(II) from aqueous solutions by Na-activated bentonite from Milos, Greece

    No full text
    In via di pubblicazion

    Differences in sheep and goats milk microbiological profile between conventional and organic farming systems in Greece

    No full text
    The aim of this study was to examine differences in the microbiological profile and antimicrobial resistance of bacteria isolated from milk from organic and conventional sheep and goat farms. Twenty-five organic and 25 conventional sheep and goat farms in the region of Thessaly, Greece participated in this study. A standardised detailed questionnaire was used to describe farming practices. A total of 50 samples were collected and analysed for total viable count (TVC), total coliform count (TCC) and somatic cell count (SCC), while Staphylococcus aureus and Escherichia coli were isolated using standard methods. Isolates were identified at species level by Api-test and Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). Susceptibility to a panel of 20 for E. coli and 16 for S. aureus antimicrobials was determined by the agar dilution method. Pulsed Field Gel Electrophoresis (PFGE) was performed for S. aureus and E. coli isolates to determine predominant clones. Lower counts of TVC, TCC and SCC were identified in milk from the organic farms, possibly due to differences in the hygienic farming practices found on those farms. API-tests and MALDI-TOF MS showed no significant differences in the S. aureus and E. coli isolates. Overall, antimicrobial resistance rates were low, while a statistically higher percentage was estimated among strains originating from conventional farms in comparison with organic farms, possibly due to the restriction of antibiotic use in organic farming. PFGE revealed diversity among S. aureus and E. coli populations in both organic and conventional farms indicating circulation of 2-3 main clones changing slightly during their evolution. Consequently, there is evidence that milk from the organic farms presents a better microbiological profile when compared with milk from conventional farms. © Proprietors of Journal of Dairy Research 2017

    Comparative Assessment of Australian Fly Ash and Conventional Concrete Bricks

    No full text
    A comparative study of the chemical composition, mineralogy, morphology and crushing strengths of fly ash bricks, conventional concrete bricks and fly ash samples has been undertaken. The main chemicals present in the products were silica and alumina while their main minerals were quartz, mullite, illite, vaterite, and calcite. Elemental analysis by XPS showed that the major elements in the samples were oxygen, silicon, carbon, calcium and aluminium; and scanning electron microscopy revealed that the fly ash samples consist of spherically-shaped particles with surface attachment containing needle-like particles. Compared with conventional concrete bricks, fly ash bricks generally have higher atomic silicon and crushing strengths but lower crystalline silica. The implication of the results on the suitability of fly ash bricks as replacements for conventional concrete bricks in the building industry is discussed from the point of view of human health and occupational safety

    Influence of Geological Conditions during Peat Accumulation on Trace Element Affinities and Their Behavior during Peat Combustion

    Get PDF
    7 páginas, 2 figuras, 7 tablas.The Philippi peat, NE Greece, constitutes one of the largest fossil fuel deposits in the Balkans and its potential use for power generation cannot be ruled out in the future. In this study, the concentrations of 43 trace elements (Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, La, Li, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Th, U, V, W, Y, Yb, Zn, and Zr) in the 550 °C peat ashes are determined and related to the concentrations in the bulk peat, to evaluate the behavior of each element during combustion. Mineralogical analysis of the chemically oxidized peat samples revealed that clay minerals, feldspars, quartz, gypsum, and calcite are the dominant mineral phases. The behavior of the trace elements during combustion depends significantly on this mineral composition that, in turn, depends on the depositional conditions during peat accumulation.This work was funded through the Greek-Spanish Bilateral Agreement for Scientific Research, which is gratefully acknowledged.Peer reviewe
    corecore