25 research outputs found

    IRAS studies of galactic supershells

    Get PDF
    Using IRAS Skyflux images and a new catalog of OB stars in the Cygnus region, a complete infrared supershell surrounding the Cyg OB1 Association was identified. This supershell is seen as a conspicuous, well-defined 2 deg x 5 deg region deficient of IR emission, with a limb-brightened edge and dimensions of about 50 x 130 pc at 1.5 kpc. The shell's elongated morphology is consistent with OB-star subclustering over the approximately 10(exp 6) yr age of the bubble. With a parent star cluster still visible (10 O stars between 25 and 45 solar mass, 3 - 4 Wolf-Rayet stars, and the possibility of 3 - 5 more massive stars that died as supernovae) the Cyg OB1 supershell is an excellent object for studying the formation and evolution of Galactic supershells. A discrepancy between the less than or equal to 1 Myr bubble age estimated from its size and the 5 Myr cluster turnoff age (45 solar mass) may require non-coeval massive star formation to explain the number of post-main-sequence stars and limit the number of past supernovae

    The Young Solar Analogs Project. I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    Get PDF
    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (SMW), and describe the method we use to transform our instrumental indices to SMW without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our Superstar technique for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the photospheric indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short (minutes to hours) timescales

    Nonthermal Emission from a Supernova Remnant in a Molecular Cloud

    Get PDF
    In evolved supernova remnants (SNRs) interacting with molecular clouds, such as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a forward shock of moderate Mach number, a cooling layer, a dense radiative shell and an interior region filled with hot tenuous plasma is expected. We present a kinetic model of nonthermal electron injection, acceleration and propagation in that environment and find that these SNRs are efficient electron accelerators and sources of hard X- and gamma-ray emission. The energy spectrum of the nonthermal electrons is shaped by the joint action of first and second order Fermi acceleration in a turbulent plasma with substantial Coulomb losses. Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal electrons produce multiwavelength photon spectra in quantitative agreement with the radio and the hard emission observed by ASCA and EGRET from IC 443. We distinguish interclump shock wave emission from molecular clump shock wave emission accounting for a complex structure of molecular cloud. Spatially resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and 3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST would distinguish the contribution of the energetic lepton component to the gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press

    Game theory for computer games design

    Get PDF
    Designing and developing computer games can be a complex activity that may involve professionals from a variety of disciplines. In this article, we examine the use of game theory for supporting the design of game play within the different sections of a computer game, and demonstrate its application in practice via adapted high-level decision trees for modelling the flow in game play and payoff matrices for modelling skill or challenge levels

    Yersinia enterocolitica palearctica serobiotype O:3/4 - a successful group of emerging zoonotic pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-pathogenic <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>caused several human outbreaks in Northern America. In contrast, low pathogenic <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 is responsible for sporadic cases worldwide with asymptomatic pigs being the main source of infection. Genomes of three <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 human isolates (including the completely sequenced Y11 German DSMZ type strain) were compared to the high-pathogenic <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>8081 O:8/1B to address the peculiarities of the O:3/4 group.</p> <p>Results</p> <p>Most high-pathogenicity-associated determinants of <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>(like the High-Pathogenicity Island, <it>yts1 </it>type 2 and <it>ysa </it>type 3 secretion systems) are absent in <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 genomes. On the other hand they possess alternative putative virulence and fitness factors, such as a different <it>ysp </it>type 3 secretion system, an RtxA-like and insecticidal toxins, and a N-acetyl-galactosamine (GalNAc) PTS system (<it>aga</it>-operon). Horizontal acquisition of two prophages and a tRNA-Asn-associated GIYep-01 genomic island might also influence the <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 pathoadaptation. We demonstrated recombination activity of the PhiYep-3 prophage and the GIYep-01 island and the ability of the <it>aga</it>-operon to support the growth of the <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>O:8/1B on GalNAc.</p> <p>Conclusions</p> <p><it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 experienced a shift to an alternative patchwork of virulence and fitness determinants that might play a significant role in its host pathoadaptation and successful worldwide dissemination.</p

    Dust in Historical Galactic Type Ia Supernova Remnants with Herschel

    Full text link
    The origin of interstellar dust in galaxies is poorly understood, particularly the relative contributions from supernovae and the cool stellar winds of low-intermediate mass stars. Here, we present Herschel PACS and SPIRE photometry at 70-500um of the historical young supernova remnants: Kepler and Tycho; both thought to be the remnants of Type Ia explosion events. We detect a warm dust component in Kepler's remnant with T = 82K and mass 0.0031Msun; this is spatially coincident with thermal X-ray emission optical knots and filaments, consistent with the warm dust originating in the circumstellar material swept up by the primary blast wave of the remnant. Similarly for Tycho's remnant, we detect warm dust at 90K with mass 0.0086Msun. Comparing the spatial distribution of the warm dust with X-rays from the ejecta and swept-up medium, and Ha emission arising from the post-shock edge, we show that the warm dust is swept up interstellar material. We find no evidence of a cool (25-50 K) component of dust with mass >0.07Msun as observed in core-collapse remnants of massive stars. Neither the warm or cold dust components detected here are spatially coincident with supernova ejecta material. We compare the lack of observed supernova dust with a theoretical model of dust formation in Type Ia remnants which predicts dust masses of 0.088(0.017)Msun for ejecta expanding into surrounding densities of 1(5)cm-3. The model predicts that silicon- and carbon-rich dust grains will encounter the interior edge of the observed dust emission at 400 years confirming that the majority of the warm dust originates from swept up circumstellar or interstellar grains (for Kepler and Tycho respectively). The lack of cold dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the 'missing' iron mass observed in ejecta.Comment: 17 pages, 14 figures, accepted for publication in MNRAS, final version including corrected typos and reference

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
    corecore