51 research outputs found
Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis
New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB
The Twin-Arginine Translocation Pathway in α-Proteobacteria Is Functionally Preserved Irrespective of Genomic and Regulatory Divergence
The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria
Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplus assay and their implication for treatment outcomes in patients from Mumbai, India
<p>Abstract</p> <p>Background</p> <p>Only 5% of the estimated global multidrug resistant TB (MDRTB) load is currently detected. Endemic Mumbai with increasing MDR would benefit from the introduction of molecular methods to detect resistance.</p> <p>Methods</p> <p>The GenoType MTBDR<it>plus </it>assay was used to determine mutations associated with isoniazid and rifampicin resistance and their correlation with treatment outcomes. It was performed on a convenience sample comprising 88 onset and 67 fifth month isolates for which phenotypic drug susceptibility testing (DST) was determined by the Buddemeyer technique for an earlier study. Simultaneous presence of wild type and mutant bands was referred to as "mixed patterns" (heteroresistance).</p> <p>Results</p> <p>Phenotypically 41 isolates were sensitive; 11 isoniazid, 2 rifampicin, 2 pyrazinamide and 5 ethambutol monoresistant; 16 polyresistant and 78 MDR. The agreement between both methods was excellent (kappa = 0.72-0.92). Of 22 rifampicin resistant onset isolates, the predominant <it>rpoB </it>mutations were the singular lack of WT8 (n = 8) and mixed D516V patterns (n = 9). Of the 64 rifampicin resistant fifth month isolates, the most frequent mutations were in WT8 (n = 31) with a further 9 showing the S531L mutation. Mixed patterns were seen in 22 (34%) isolates, most frequently for the D516V mutation (n = 21). Of the 22 onset and 35 fifth month <it>katG </it>mutants, 13 and 12 respectively showed the S315T1 mutation with loss of the WT. Mixed patterns involving both S315T1 and S315T2 were seen in 9 and 23 isolates respectively. Seventeen of 23 and 23/35 <it>inhA </it>mutant onset and fifth month isolates showed mixed A16G profiles. Additionally, 10 fifth month isolates lacked WT2. Five onset and 6 fifth month isolates had both <it>katG </it>and <it>inhA </it>mutations. An association was noted between only <it>katG </it>but not only <it>inhA </it>resistance and poor outcome (<it>p </it>= 0.037); and additional resistance to ethambutol (<it>p </it>= 0.0033). More fifth month than onset isolates had mixed profiles for at least 1 gene (<it>p </it>= 0.000001).</p> <p>Conclusions</p> <p>The use of the assay to rapidly diagnose MDR could guide simultaneous first- and second-line DST, and reduce the delay in administering appropriate regimens. Furthermore, detection of heteroresistance could prevent inaccurate "cured" treatment outcomes documented through smear microscopy and permit more sensitive detection of neonascent resistance.</p
Systematic Genetic Nomenclature for Type VII Secretion Systems
CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological
agent of human tuberculosis, Mycobacterium
tuberculosis, are protected by an impermeable
cell envelope composed of an inner
cytoplasmic membrane, a peptidoglycan
layer, an arabinogalactan layer, and an
outer membrane. This second membrane
consists of covalently linked, tightly packed
long-chain mycolic acids [1,2] and noncovalently
bound shorter lipids involved in
pathogenicity [3–5]. To ensure protein
transport across this complex cell envelope,
mycobacteria use various secretion pathways,
such as the SecA1-mediated general
secretory pathway [6,7], an alternative
SecA2-operated pathway [8], a twin-arginine
translocation system [9,10], and a
specialized secretion pathway variously
named ESAT-6-, SNM-, ESX-, or type
VII secretion [11–16]. The latter pathway,
hereafter referred to as type VII secretion
(T7S), has recently become a large and
competitive research topic that is closely
linked to studies of host–pathogen interactions
of M. tuberculosis [17] and other
pathogenic mycobacteria [16]. Molecular
details are just beginning to be revealed
[18–22] showing that T7S systems are
complex machineries with multiple components
and multiple substrates. Despite
their biological importance, there has been
a lack of a clear naming policy for the
components and substrates of these systems.
As there are multiple paralogous T7S
systems within the Mycobacteria and
orthologous systems in related bacteria,
we are concerned that, without a unified
nomenclature system, a multitude of redundant
and obscure gene names will be
used that will inevitably lead to confusion
and hinder future progress. In this opinion
piece we will therefore propose and introduce
a systematic nomenclature with
guidelines for name selection of new
components that will greatly facilitate
communication and understanding in this
rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio
Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment
Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens
Pulsed-field gel electrophoresis has been used to assess genomic diversity and to identify virulence regions in 10 strains, representing all five serotypes, of the anaerobic pathogen Clostridium perfringens. Detailed physical and gene maps of the approximately 3.6 Mb circular chromosomes have been established in eight cases and used to deduce a consensus map. With one exception the chromosomal arrangement was relatively constant and map comparison allowed three hypervariable regions to be identified. One of these was associated with the enterotoxin gene, cpe, which is an important cause of human diarrhoea following the ingestion of food contaminated with C. perfringens. Another variable region spanning the major virulence gene plc, which encodes the cytolytic toxin, alpha, was located near oriC in all cases whereas the gene for another lethal typing toxin, epsilon, was borne by an episome. It now seems likely that the serological variations, and the changes in the pathogenic spectrum which constitute the C. perfringens typing system, may be due entirely to the loss, or acquisition, of extrachromosomal genetic elements
Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities
The plc gene encoding the alpha-toxin (phospholipase C), an important virulence factor of Clostridium perfringens, has been cloned, sequenced and expressed in Escherichia coli. Transcriptional analysis of mRNAs produced in vivo by C. perfringens and E. coli, and in vitro using purified RNA polymerase from C. perfringens revealed that plc is transcribed constitutively from a single promoter situated about 100 nucleotides from the coding sequence. A T7 expression system was used to overproduce alpha-toxin in E. coli; enzymological studies with the amplified plc gene product unambiguously demonstrated that both lecithinase (phospholipase C) and sphingomyelinase activities were associated with this 43,000 dalton cytotoxin. The 370-residue alpha-toxin is haemolytic and shares sequence and functional homology with the two components of Bacillus cereus haemolysin, cereolysin AB, in which phospholipase C and sphingomyelinase activities are associated with different polypeptides
Molecular characterisation of the colicin E2 operon and identification of its products
The DNA sequence of the entire colicin E2 operon was determined. The operon comprises the colicin activity gene, ceaB, the colicin immunity gene, ceiB, and the lysis gene, celB, which is essential for colicin release from producing cells. A potential LexA binding site is located immediately upstream from ceaB, and a rho-independent terminator structure is located immediately downstream from celB. A comparison of the predicted amino acid sequences of colicin E2 and cloacin DF13 revealed extensive stretches of homology. These colicins have different modes of action and recognise different cell surface receptors; the two major regions of heterology at the carboxy terminus, and in the carboxy-terminal end of the central region probably correspond to the catalytic and receptor-recognition domains, respectively. Sequence homologies between colicins E2, A and E1 were less striking, and the colicin E2 immunity protein was not found to share extensive homology with the colicin E3 or cloacin DF13 immunity proteins. The lysis proteins of the ColE2, ColE1 and CloDF13 plasmids are almost identical except in the aminoterminal regions, which themselves have overall similarity with lipoprotein signal peptides. Processing of the ColE2 prolysis protein to the mature form was prevented by globomycin, a specific inhibitor of the lipoprotein signal peptidase. The mature ColE2 lysis protein was located in the cell envelope. The results are discussed in terms of the functional organisation of the colicin operons and the colicin proteins, and the way in which colicins are released from producing cells
- …