15 research outputs found

    Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (danio rerio)

    No full text
    Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acute selenium exposure on oxidative stress biomarkers in a model organism, zebrafish (Danio rerio). Fish were exposed to selenium selenite at 1mgL(-1). Reduced glutathione (GSH), and metallothionein (MT) concentrations were determined in liver, kidney and brain, with MT also being determined in bile. Essential metals and trace-elements were also determined by inductively coupled mass spectrometry (ICP-MS) in order to verify possible metal homeostasis alterations. GSH concentrations in liver, kidney and brain increased significantly (1.05±0.03μmolg(-1) ww, 1.42±0.03μmolg(-1) ww and 1.64±0.03μmolg(-1) ww, respectively) in the Se-exposed group when compared to the controls (0.88±0.05μmolg(-1) ww, 0.80±0.04μmolg(-1) ww and 0.89±0.03μmolg(-1) ww for liver, kidney and brain, respectively). MT levels in Se-exposed liver (0.52±0.03μmolg(-1) ww) decreased significantly in comparison to the control group (0.64±0.02μmolg(-1) ww), while levels in bile increased, albeit non-significantly. This is in accordance with previous studies that indicate efficient biliary MT action, leading to a rapid metabolism and elimination of contaminants from the body. Levels in the brain increased significantly after Se-exposure (0.57±0.01μmolg(-1) ww) when compared to the control group (0.35±0.03μmolg(-1) ww) since this organ does not present a detoxification route as quick as the liver-gallbladder route. Several metal and trace-elements were altered with Se-exposure, indicating that excess of selenium results in metal dyshomeostasis. This is the first report on metal dyshomeostasis due to Se-exposure, which may be the first step in the mechanism of action of selenium toxicity, as is postulated to occur in certain major human pathophysiologies.Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acut336872CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOsem informaçãosem informaçãosem informaçãoThe authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenadoria de Aperfeiçoamento dos Professores do Ensino Superior), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), and Instituto Na

    Evaluation and standardization of different purification procedures for fish bile and liver metallothionein quantification by spectrophotometry and SDS-PAGE analyses

    No full text
    International audienceFish bile metallothioneins (MT) have been recently reported as biomarkers for environmental metal contamination; however, no studies regarding standardizations for their purification are available. Therefore, different procedures (varying centrifugation times and heat-treatment temperatures) and reducing agents (DTT, β-mercaptoethanol and TCEP) were applied to purify MT isolated from fish (Oreochromis niloticus) bile and liver. Liver was also analyzed, since these two organs are intrinsically connected and show the same trend regarding MT expression. Spectrophotometrical analyses were used to quantify the resulting MT samples, and SDS-PAGE gels were used to qualitatively assess the different procedure results. Each procedure was then statistically evaluated and a multivariate statistical analysis was then applied. A response surface methodology was also applied for bile samples, in order to further evaluate the responses for this matrix. Heat treatment effectively removes most undesired proteins from the samples, however results indicate that temperatures above 70 °C are not efficient since they also remove MTs from both bile and liver samples. Our results also indicate that the centrifugation times described in the literature can be decreased in order to analyze more samples in the same timeframe, of importance in environmental monitoring contexts where samples are usually numerous. In an environmental context, biliary MT was lower than liver MT, as expected, since liver accumulates MT with slower detoxification rates than bile, which is released from the gallbladder during feeding, and then diluted by water. Therefore, bile MT seems to be more adequate in environmental monitoring scopes regarding recent exposure to xenobiotics that may affect the proteomic and metalloproteomic expression of this biological matrix

    Fortification of Ground Roasted Coffees with Iron, Zinc, and Calcium Salts: Evaluation of Minerals Recovery in Filtered and Espresso Brews

    No full text
    Micronutrient deficiencies are of great public health and socioeconomic importance. Food fortification has been widely used as a simple low-cost resource to increase mineral intake. Considering that coffee is the most consumed food product worldwide, in this study, C. arabica and C. canephora seeds were roasted, ground, and fortified with three salts of iron, zinc, and calcium as part of the selection of appropriate mineral vehicles for fortification. After ranking the performance through a test by a trained tasters’ panel, only two salts for each mineral remained. Mineral recoveries were evaluated by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in filtered (paper and nylon filters) and espresso brews. The best mean recoveries for each mineral in espresso brew prepared from fortified coffees were: 80.8% of iron as ferrous bisglycinate chelate, 75.4% of zinc as zinc lactate, and 72.1% of calcium as calcium lactate. These better ranked salts by the tasters’ panel. In filtered brews, mean recovery values of 51.1%, 47.6%, and 51.6% were obtained for the same mineral salts, respectively. No difference or very small differences were observed between species and types of filter. The results implications are discussed

    Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk

    No full text
    Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg−1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg−1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg−1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements

    Tracing the Origins of Air Contaminants Near Environmental Protection Areas

    No full text
    This case study aimed to assess the impact of particulate matter (PM) emitted by highway works in an ecosystem belonging to one of the most important Atlantic Rainforest remnants in southeastern Brazil. The study was conducted during federal highway works, comprising a toll station construction and lane widening. To the best of our knowledge, this is the most comprehensive study on air pollution and its impacts on Environmental Protection Areas (EPAs) in Brazil. Total suspended particle (TSP) samples were obtained from 2014 to 2016, totaling 1823 samples. Some TSP samples were chosen for ionic and elemental quantification. Daily concentrations ranged from 8 to 345 µg m−3. The TSP concentrations exceeded Brazilian guidelines (240 µg m−3), mainly during the federal highway works. The main determined elements Fe (50–2100 ng m−3) and Mn (3–30 ng m−3) were associated with soil origin. Trace elements (Cu, Co, Ni, V, and Pb), detected from 2 × 10−7 to 54 ng m−3, and high NO3− (2.4 − 8.3 µg m−3) and SO42− (2.6 − 6.8 µg m−3) concentrations were correlated with vehicular emissions. The findings of this study indicate that Cd and Cu represent environmental risks, as they may compromise biochemical plant processes.</p

    Quenching of the Photoluminescence of Gold Nanoclusters Synthesized by Pulsed Laser Ablation in Water upon Interaction with Toxic Metal Species in Aqueous Solution

    Get PDF
    Sensors for the detection of heavy metal ions in water are in high demand due to the danger they pose to both the environment and human health. Among their possible detection approaches, modulation of the photoluminescence of gold nanoclusters (AuNCs) is gaining wide interest as an alternative to classical analytical methods based on complex and high-cost instrumentation. In the present work, luminescent oxidized AuNCs emitting in both ultraviolet (UV) and visible (blue) regions were synthesized by pulsed laser ablation of a gold target in NaOH aqueous solution, followed by different bleaching processes. High-resolution electron microscopy and energy-dispersive X-ray scattering confirmed the presence of oxygen and gold in the transparent photoluminescent clusters, with an average diameter of about 3 nm. The potentialities of the bleached AuNCs colloidal dispersions for the detection of heavy metal ions were studied by evaluating the variation in photoluminescence in the presence of Cd2+, Pb2+, Hg2+ and CH3Hg+ ions. Different responses were observed in the UV and visible (blue) spectral regions. The intensity of blue emission decreased (no more than 10%) and saturated at concentrations higher than 20 ppb for all the heavy metal ions tested. In contrast, the UV band emission was remarkably affected in the presence of Hg2+ ions, thus leading to signal variations for concentrations well beyond 20 ppb (the concentration at which saturation occurs for other ions). The limit of detection for Hg2+ is about 3 ppb (15 nmol/L), and the photoluminescence intensity diminishes linearly by about 75% up to 600 ppb. The results are interpreted based on the ligand-free interaction, i.e., the metallophilic bonding formation of Hg2+ and Au+ oxide present on the surface of the UV-emitting nanoclusters
    corecore