293 research outputs found

    Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives

    Get PDF
    Yeast immobilization with low-cost carrier materials is a suitable strategy to optimize the fermentation of lignocellulosic hydrolysates for the production of second-generation (2G) ethanol. It is defined as the physical confinement of intact cells to a certain region of space (the carrier) with the preservation of their biological activity. This technological approach facilitates promising strategies for second-generation bioethanol production due to the enhancement of the fermentation performance that is expected to be achieved. Using immobilized cells, the resistance to inhibitors contained in the hydrolysates and the co-utilization of sugars are improved, along with facilitating separation operations and the reuse of yeast in new production cycles. Until now, the most common immobilization technology used calcium alginate as a yeast carrier but other supports such as biochar or multispecies biofilm membranes have emerged as interesting alternatives. This review compiles updated information about cell carriers and yeast-cell requirements for immobilization, and the benefits and drawbacks of different immobilization systems for second-generation bioethanol production are investigated and compared. © 2021 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.publishedVersio

    An integrated general practice and pharmacy-based intervention to promote the use of appropriate preventive medications among individuals at high cardiovascular disease risk: protocol for a cluster randomized controlled trial

    Get PDF
    Background: Cardiovascular diseases (CVD) are responsible for significant morbidity, premature mortality, and economic burden. Despite established evidence that supports the use of preventive medications among patients at high CVD risk, treatment gaps remain. Building on prior evidence and a theoretical framework, a complex intervention has been designed to address these gaps among high-risk, under-treated patients in the Australian primary care setting. This intervention comprises a general practice quality improvement tool incorporating clinical decision support and audit/feedback capabilities; availability of a range of CVD polypills (fixed-dose combinations of two blood pressure lowering agents, a statin ± aspirin) for prescription when appropriate; and access to a pharmacy-based program to support long-term medication adherence and lifestyle modification. Methods: Following a systematic development process, the intervention will be evaluated in a pragmatic cluster randomized controlled trial including 70 general practices for a median period of 18 months. The 35 general practices in the intervention group will work with a nominated partner pharmacy, whereas those in the control group will provide usual care without access to the intervention tools. The primary outcome is the proportion of patients at high CVD risk who were inadequately treated at baseline who achieve target blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) levels at the study end. The outcomes will be analyzed using data from electronic medical records, utilizing a validated extraction tool. Detailed process and economic evaluations will also be performed. Discussion: The study intends to establish evidence about an intervention that combines technological innovation with team collaboration between patients, pharmacists, and general practitioners (GPs) for CVD prevention. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN1261600023342

    Lrp Acts as Both a Positive and Negative Regulator for Type 1 Fimbriae Production in Salmonella enterica Serovar Typhimurium

    Get PDF
    Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment

    An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    Get PDF
    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella

    Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts

    Get PDF
    Background Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which contains xylose as a major component in concentrations that can reach up to 40% of the total biomass in hardwoods and agricultural residues. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed by Saccharomyces cerevisiaethe most used organism for large-scale ethanol production. In this work, industrial S. cerevisiae strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose. Results These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 g/g of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases. Conclusions These results show the potential of industrial S. cerevisiae strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.This work has been carried out at the Biomass and Bioenergy Research Infrastructure (BBRI)-LISBOA-01-0145-FEDER-022059, supported by Operational Programme for Competitiveness and Internationalization (PORTUGAL2020), by Lisbon Portugal Regional Operational Programme (Lisboa 2020) and by North Portugal Regional Operational Programme (Norte 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and has been supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020, the “Contrato-Programa” UIDB/04050/2020, the MIT-Portugal Program (Ph.D. Grant PD/BD/128247/2016 to Joana T. Cunha) and through Project FatVal (POCI-01-0145-FEDER-032506) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    The functional significance of microRNA-145 in prostate cancer

    Get PDF
    BackgroundMicroRNAs (miRNAs) are small noncoding RNAs that have important roles in numerous cellular processes. Recent studies have shown aberrant expression of miRNAs in prostate cancer tissues and cell lines. On the basis of miRNA microarray data, we found that miR-145 is significantly downregulated in prostate cancer.Methods and resultsWe investigated the expression and functional significance of miR-145 in prostate cancer. The expression of miR-145 was low in all the prostate cell lines tested (PC3, LNCaP and DU145) compared with the normal cell line, PWR-1E, and in cancerous regions of human prostate tissue when compared with the matched adjacent normal. Overexpression of miR-145 in PC3-transfected cells resulted in increased apoptosis and an increase in cells in the G2/M phase, as detected by flow cytometry. Investigation of the mechanisms of inactivation of miR-145 through epigenetic pathways revealed significant DNA methylation of the miR-145 promoter region in prostate cancer cell lines. Microarray analyses of miR-145-overexpressing PC3 cells showed upregulation of the pro-apoptotic gene TNFSF10, which was confirmed by real-time PCR and western analysis.ConclusionOne of the genes significantly upregulated by miR-145 overexpression is the proapoptotic gene TNFSF10. Therefore, modulation of miR-145 may be an important therapeutic approach for the management of prostate cancer

    Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival

    Get PDF
    MicroRNA-21 is up-regulated in a variety of cancers like, breast, colorectal, lung, head and neck etc. However, the regulation of miR-21 in renal cell carcinoma (RCC) has not yet been studied systematically.We measured miR-21 levels in 54 pairs of kidney cancers and their normal matched tissues by real-time PCR. The expression level of miR-21 was correlated with 5 year survival and the pathological stage. Functional studies were done after inhibiting miR-21 in RCC cell lines. We studied in vitro and in vivo effects of the chemo preventive agent genistein on miR-21 expression. In 48 cases (90%), miR-21 was increased. All patients with low miR-21 expression survived 5 years, while with high miR-21 expression, only 50% survived. Higher expression of miR-21 is associated with an increase in the stage of renal cancer. Functional studies after inhibiting miRNA-21 in RCC cell lines show cell cycle arrest, induction of apoptosis and reduced invasive and migratory capabilities. Western blot analysis showed an increase in the expression of p21 and p38 MAP kinase genes and a reduction in cyclin E2. Genistein inhibited the expression of miR-21 in A-498 cells and in the tumors formed after injecting genistein treated A-498 cells in nude mice besides inhibiting tumor formation.The current study shows a clear correlation between miR-21 expression and clinical characteristics of renal cancer. Thus we believe that miR-21 can be used as a tumor marker and its inhibition may prove to be useful in controlling cancers with up-regulated miR-21

    Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation

    Get PDF
    Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O linkages, making them harder to break. However, for an efficient lignin depolymerisation, both types of inter-unit linkages have to be broken. This is more relevant because of the fact that many delignification processes tend to result in the formation of additional C–C inter-unit bonds. Here we review the strategies reported for the cleavage of C–C inter-unit linkages in lignin model compounds and lignin. Although a number of articles are available on the cleavage of C–O inter-unit linkages, reports on the selective cleavage of C–C inter-unit linkages are relatively less. Oxidative cleavage, hydrogenolysis, two-step redox-neutral process, microwave assisted cleavage, biocatalytic and photocatalytic methods have been reported for the breaking of C–C inter-unit linkages in lignin. Here we review all these methods in detail, focused only on the breaking of C–C linkages. The objective of this review is to motivate researchers to design new strategies to break this strong C–C inter-unit bonds to valorise lignins, technical lignins in particular

    Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the growth of renal cysts, and patients with ADPKD have an increased risk of morbidity, premature mortality, and other life-time complications including renal and hepatic cyst and urinary tract infection, intracranial aneurysm, diverticulosis, and kidney pain which impair quality of life. Despite some therapeutic advances and the growing number of clinical trials in ADPKD, the outcomes that are relevant to patients and clinicians, such as symptoms and quality of life, are infrequently and inconsistently reported. This potentially limits the contribution of trials to inform evidence-based decision-making. The Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) project aims to establish a consensus-based set of core outcomes for trials in PKD (with an initial focus on ADPKD but inclusive of all stages) that patients and health professionals identify as critically important. METHODS: The five phases of SONG-PKD are: a systematic review to identify outcomes that have been reported in existing PKD trials; focus groups with nominal group technique with patients and caregivers to identify, rank, and describe reasons for their choices; qualitative stakeholder interviews with health professionals to elicit individual values and perspectives on outcomes for trials involving patients with PKD; an international three-round Delphi survey with all stakeholder groups (including patients, caregivers, healthcare providers, policy makers, researchers, and industry) to gain consensus on critically important core outcome domains; and a consensus workshop to review and establish a set of core outcome domains and measures for trials in PKD. DISCUSSION: The SONG-PKD core outcome set is aimed at improving the consistency and completeness of outcome reporting across ADPKD trials, leading to improvements in the reliability and relevance of trial-based evidence to inform decisions about treatment and ultimately improve the care and outcomes for people with ADPKD
    corecore