146 research outputs found
Coarse-Graining with Equivariant Neural Networks: A Path Towards Accurate and Data-Efficient Models
Machine learning has recently entered into the mainstream of coarse-grained
(CG) molecular modeling and simulation. While a variety of methods for
incorporating deep learning into these models exist, many of them involve
training neural networks to act directly as the CG force field. This has
several benefits, the most significant of which is accuracy. Neural networks
can inherently incorporate multi-body effects during the calculation of CG
forces, and a well-trained neural network force field outperforms pairwise
basis sets generated from essentially any methodology. However, this comes at a
significant cost. First, these models are typically slower than pairwise force
fields even when accounting for specialized hardware which accelerates the
training and integration of such networks. The second, and the focus of this
paper, is the need for the considerable amount of data needed to train such
force fields. It is common to use tens of microseconds of molecular dynamics
data to train a single CG model, which approaches the point of eliminating the
CG models usefulness in the first place. As we investigate in this work, it is
apparent that this data-hunger trap from neural networks for predicting
molecular energies and forces is caused in large part by the difficulty in
learning force equivariance, i.e., the fact that force vectors should rotate
while maintaining their magnitude in response to an equivalent rotation of the
system. We demonstrate that for CG water, networks that inherently incorporate
this equivariance into their embedding can produce functional models using
datasets as small as a single frame of reference data, which networks without
inherent symmetry equivariance cannot
Comparative effectiveness of hand scaling by undergraduate dental students following a two-week pre-clinical training course
BACKGROUND
The Bologna reform resulted in a drastic restructuring of pre-clinical training courses at the University of Zurich. The aim of this study was to assess student pre-clinical scaling/root planning skills after just 8.5 hours of manual training.
MATERIAL AND METHODS
Three consecutive classes of dental students (n = 41; n = 34; n = 48) were tasked with removing lacquer concrement from the maxillary left canine on a typodont using Gracey and universal (Deppeler M23A) curettes. At baseline (prior to instruction), a timed five-minute session of scaling/root planning was undertaken. The second scaling/root planning session was held immediately following training. Eight experienced dental hygienists and eight lay people served as positive and negative controls, using the same instruments and time limit, respectively. Instrumented teeth were collected, scanned and planimetrically analysed for the percentage of tooth surface cleaned. Statistical analyses were performed to assess the dental students' improvement after the training (Wilcoxon signed-rank test) and to compare it to that of laypeople and dental hygienists (Kruskal-Wallis rank sum test followed by Conover's post hoc test).
RESULTS
At baseline, the dental students' mean scaling scores of the cleaned surfaces were not significantly different than those of laypeople (29.8%, 31.0%, 42% vs 27.9%). However, after 8.5 hours of manual training, the students' ability to clean the maxillary tooth improved significantly and they achieved mean removal values of 61.7%, 79.5% and 76% compared to the 67.4% (P < .001) of the experienced dental hygienists (Tables Tables and ). There were no statistically significant differences between the scores achieved by students after training and those achieved by experienced dental hygienists.
CONCLUSION
A shortened pre-clinical training time was sufficient for students to acquire the basic scaling/root planning skills needed in preparation for clinical training. Further research is needed to identify ways to help students consistently reach highest skill levels
Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
PurposeIn this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound.Materials and MethodsAn existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed.ResultsWe found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity.ConclusionIn summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles
Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound.
Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed.
Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity.
Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.German Research Foundation (DFG)Stuttgart Center for Simulation ScienceBundesministerium für Bildung und Forschun
The immediate effects of passive hip joint mobilization on hip abductor/external rotator muscle strength in patients with anterior knee pain and impaired hip function. A randomized, placebo-controlled crossover trial.
BACKGROUND: Anterior knee pain (AKP) is often associated with persistent hip muscle weakness and facilitatory interventions may be beneficial for managing patients with AKP (pwAKP). Physiotherapists often employ passive oscillatory hip joint mobilizations to increase hip muscle function. However, there is little information about their effectiveness and the mechanisms of action involved. OBJECTIVES: To investigate the immediate effects of passive hip joint mobilization on eccentric hip abductor/external rotator muscle strength in pwAKP with impaired hip function. DESIGN: A double-blinded, randomized, placebo-controlled crossover design. METHOD: Eighteen patients with AKP participated in two sessions of data collection with one week apart. They received passive hip joint mobilization or placebo mobilization in a randomized order. Eccentric hip muscle strength was measured immediately before and after each intervention using a portable hand-held dynamometer. RESULTS: An ANCOVA with the sequence of treatment condition as the independent variable, the within-subject post-treatment differences as the dependent variable and the within-subject pre-treatment differences as the covariate was conducted. Patients showed a significant mean increase in eccentric hip muscle strength of 7.73% (p = 0.001) for the mobilization condition, compared to a mean decrease of 4.22% for the placebo condition. Seventeen out of eighteen participants reported having no pain during any of the strength testing. CONCLUSION: These data suggest that passive hip joint mobilization has an immediate positive effect on eccentric hip abductor/external rotator muscle strength in pwAKP with impaired hip function, even in the absence of current pain
Association of inappropriate outpatient pediatric antibiotic prescriptions with adverse drug events and health care expenditures
Importance: Nonguideline antibiotic prescribing for the treatment of pediatric infections is common, but the consequences of inappropriate antibiotics are not well described.
Objective: To evaluate the comparative safety and health care expenditures of inappropriate vs appropriate oral antibiotic prescriptions for common outpatient pediatric infections.
Design, Setting, and Participants: This cohort study included children aged 6 months to 17 years diagnosed with a bacterial infection (suppurative otitis media [OM], pharyngitis, sinusitis) or viral infection (influenza, viral upper respiratory infection [URI], bronchiolitis, bronchitis, nonsuppurative OM) as an outpatient from April 1, 2016, to September 30, 2018, in the IBM MarketScan Commercial Database. Data were analyzed from August to November 2021.
Exposures: Inappropriate (ie, non-guideline-recommended) vs appropriate (ie, guideline-recommended) oral antibiotic agents dispensed from an outpatient pharmacy on the date of infection.
Main Outcomes and Measures: Propensity score-weighted Cox proportional hazards models were used to estimate hazards ratios (HRs) and 95% CIs for the association between inappropriate antibiotic prescriptions and adverse drug events. Two-part models were used to calculate 30-day all-cause attributable health care expenditures by infection type. National-level annual attributable expenditures were calculated by scaling attributable expenditures in the study cohort to the national employer-sponsored insurance population.
Results: The cohort included 2 804 245 eligible children (52% male; median [IQR] age, 8 [4-12] years). Overall, 31% to 36% received inappropriate antibiotics for bacterial infections and 4% to 70% for viral infections. Inappropriate antibiotics were associated with increased risk of several adverse drug events, including Clostridioides difficile infection and severe allergic reaction among children treated with a nonrecommended antibiotic agent for a bacterial infection (among patients with suppurative OM, C. difficile infection: HR, 6.23; 95% CI, 2.24-17.32; allergic reaction: HR, 4.14; 95% CI, 2.48-6.92). Thirty-day attributable health care expenditures were generally higher among children who received inappropriate antibiotics, ranging from 56 for bacterial infections and from -97 for viral infections. National annual attributable expenditure estimates were highest for suppurative OM (21.3 million), and viral URI ($19.1 million).
Conclusions and Relevance: In this cohort study of children with common infections treated in an outpatient setting, inappropriate antibiotic prescriptions were common and associated with increased risks of adverse drug events and higher attributable health care expenditures. These findings highlight the individual- and national-level consequences of inappropriate antibiotic prescribing and further support implementation of outpatient antibiotic stewardship programs
Investigating the contribution of the upper and lower lumbar spine, relative to hip motion, in everyday tasks
Background: It is commonplace for clinicians to measure range of motion (ROM) in the assessment of the lumbar spine. Traditional single 'joint' models afford measuring only a limited number of regions along the spine and may, therefore, over-simplify the description of movement. It remains to be determined if additional, useful information can be gleaned by considering the traditional 'lumbar region' as two regions. Objective: The aim of this study was to determine whether modelling the lumbar spine as two separate regions (i.e. upper and lower), yields a different understanding of spinal movement relative to hip motion, than a traditional single-joint model. This study is unique in adopting this approach to evaluate a range of everyday tasks. Method: Lumbar spine motion was measured both by being considered as a whole region (S1 to T12), and where the lumbar spine was modelled as two regions (the upper (L3-T12) and lower (S1-L3)). Results: A significant difference was evident between the relative contribution from the lower and upper spine across all movements, with the lower lumbar spine consistently contributing on average 63% of the total ROM. A significant difference was also evident between the whole lumbar spine-hip ratio, and the lower lumbar spine-hip ratio, for the movement of lifting only. The lower lumbar spine achieved greater velocity for all tasks, when compared to the upper lumbar spine. Conclusion: This study has consistently demonstrated differences in the contribution of the upper and lower spinal regions across a range of everyday tasks; hence, it would appear that greater focus should be given to performing more detailed assessments to fully appreciate spinal movement
Altered muscular activation during prone hip extension in women with and without low back pain
<p>Abstract</p> <p>Background</p> <p>Altered movement pattern has been associated with the development of low back pain (LBP). The purpose of this study was to investigate the activity pattern of the ipsilateral erector spinae (IES) and contralateral erectorspinae (CES), gluteus maximus (GM) and hamstring (HAM) muscles during prone hip extension (PHE) test in women with and without LBP. A cross-sectional non-experimental design was used.</p> <p>Methods</p> <p>Convenience sample of 20 female participated in the study. Subjects were categorized into two groups: with LBP (n = 10) and without LBP (n = 10). The electromyography (EMG) signal amplitude of the tested muscles during PHE (normalized to maximum voluntary electrical activity (MVE)) was measured in the dominant lower extremity in all subjects.</p> <p>Results</p> <p>Statistical analysis revealed greater normalized EMG signal amplitude in women with LBP compared to non-LBP women. There was significant difference in EMG activity of the IES (P = 0.03) and CES (P = 0.03) between two groups. However, no significant difference was found in EMG signals of the GM (P = 0.11) and HAM (P = 0.14) among two groups.</p> <p>Conclusion</p> <p>The findings of this study demonstrated altered activation pattern of the lumbo-pelvic muscles during PHE in the women with chronic LBP. This information is important for investigators using PHE as either an evaluation tool or a rehabilitation exercise.</p
Reliability of movement control tests in the lumbar spine
<p>Abstract</p> <p>Background</p> <p>Movement control dysfunction [MCD] reduces active control of movements. Patients with MCD might form an important subgroup among patients with non specific low back pain. The diagnosis is based on the observation of active movements. Although widely used clinically, only a few studies have been performed to determine the test reliability. The aim of this study was to determine the inter- and intra-observer reliability of movement control dysfunction tests of the lumbar spine.</p> <p>Methods</p> <p>We videoed patients performing a standardized test battery consisting of 10 active movement tests for motor control in 27 patients with non specific low back pain and 13 patients with other diagnoses but without back pain. Four physiotherapists independently rated test performances as correct or incorrect per observation, blinded to all other patient information and to each other. The study was conducted in a private physiotherapy outpatient practice in Reinach, Switzerland. Kappa coefficients, percentage agreements and confidence intervals for inter- and intra-rater results were calculated.</p> <p>Results</p> <p>The kappa values for inter-tester reliability ranged between 0.24 – 0.71. Six tests out of ten showed a substantial reliability [k > 0.6]. Intra-tester reliability was between 0.51 – 0.96, all tests but one showed substantial reliability [k > 0.6].</p> <p>Conclusion</p> <p>Physiotherapists were able to reliably rate most of the tests in this series of motor control tasks as being performed correctly or not, by viewing films of patients with and without back pain performing the task.</p
- …