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ABSTRACT

Background: It is commonplace for clinicians to measure range of motion (ROM) in the assessment of the
lumbar spine. Traditional single ‘joint’ models afford measuring only a limited number of regions along
the spine and may, therefore, over-simplify the description of movement. It remains to be determined if
additional, useful information can be gleaned by considering the traditional ‘lumbar region’ as two
regions.
Objective: The aim of this study was to determine whether modelling the lumbar spine as two separate
regions (i.e. upper and lower), yields a different understanding of spinal movement relative to hip
motion, than a traditional single-joint model. This study is unique in adopting this approach to evaluate a
range of everyday tasks.
Method: Lumbar spine motion was measured both by being considered as a whole region (S1 to T12), and
where the lumbar spine was modelled as two regions (the upper (L3-T12) and lower (S1-L3)).
Results: A significant difference was evident between the relative contribution from the lower and upper
spine across all movements, with the lower lumbar spine consistently contributing on average 63% of the
total ROM. A significant difference was also evident between the whole lumbar spine-hip ratio, and the
lower lumbar spine-hip ratio, for the movement of lifting only. The lower lumbar spine achieved greater
velocity for all tasks, when compared to the upper lumbar spine.
Conclusion: This study has consistently demonstrated differences in the contribution of the upper and
lower spinal regions across a range of everyday tasks; hence, it would appear that greater focus should be
given to performing more detailed assessments to fully appreciate spinal movement.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Whilst previous authors have suggested that the upper and lower
lumbar spines display differences in their kinematic behaviour

Measuring lumbar range of motion (ROM) is typically performed
using 2 sensors or markers, one at each end of the lumbar spine.
This includes technologies relying on electromagnetics (Shum et al.,
2005, 2007), inertial sensors (Ha et al., 2013; Williams et al., 2013)
and fibre-optics (Williams et al., 2010). Calculating the resultant
angle between these 2 sensors provides an estimate of lumbar
range of motion, with the lumbar spine modelled as a single ‘joint’.
The lumbar spine, however, consists of many segments or ‘joints’
(L1-S1) and thus this single joint model may result in lost infor-
mation about more regional lumbar spine movement behaviour.

* Corresponding author.
E-mail addresses: AlghtaniRS@cardiff.ac.uk (R.S. Alghtani), JonesMD1@Cardiff.
ac.uk (M.D. Jones).
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(Williams et al., 2012; Parkinson et al., 2013; Williams et al., 2013),
traditional single ‘joint’ models would fail to identify such subtle-
ties and may, therefore, over simplify the description of movement.
Significant scope exists to better understand and appreciate the
relationship between lumbar spine and hip kinematics, given how
it both underpins rehabilitation programmes (Lee and Wong, 2002)
and is associated with various forms of functional disabilities,
which may have a serious impact on an individual's quality of life
(Cox et al., 2000).

The dominant functional tasks such as flexion, extension, lifting
and transiting from stand-to-sit or sit-to-stand have long been
associated with spinal disorders and spinal pain (McGill, 1997;
Dempsey, 1998). Spine and hip kinematics are closely coordinated
when performing many daily tasks (Mayer et al., 1984; Pearcy et al.,
1985; Strand and Wie, 1999), suggesting that lumbar spine-hip
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disorders may affect functional tasks as well as the cardinal
movements often employed in the clinic. Indeed, sit-to-stand and
stand-to-sit activities are very regular daily tasks (Lomaglio and
Eng, 2005), performed 60 times per day on average by working
people (Dall and Kerr, 2010). The most important task that in-
fluences lumbar and hip kinematics is lifting objects from the floor,
which is a common daily activity particularly amongst those
working in jobs involving physical labour (Shum et al., 2005).

A series of studies have previously focused on quantifying the
relationship between the lumbar spine relative to hip motion,
during everyday tasks (Paquet et al., 1994; Lee and Wong, 2002;
Wong and Lee, 2004; Shum et al., 2005; Shum et al., 2007); how-
ever, in all cases the lumbar spine was only considered as a single
region. More recently, authors have adopted multi-regional lumbar
spine models across clinical populations (Williams et al., 2012,
2013) and healthy subjects (Leardini et al., 2011; Parkinson et al.,
2013), identifying differences in regional contribution. No study
has yet, however, considered a multi-regional lumbar spine model
versus hip motion, across a series of everyday tasks. Such data
would significantly assist in achieving a better understanding of
lumbar spine kinematics, especially when supplemented by multi-
regional velocities (Shum et al., 2010), as the relative movement
behaviour of the hip and its interaction with the lumbar spine has
been suggested as being important (Lee and Wong, 2002;
Sahrmann, 2002; O'Sullivan, 2005). Clinical studies have previ-
ously confirmed differences in this ratio between those with and
without back pain (Shum et al., 2005, 2007), whilst alterations in
this ratio affect the bending and compressive stresses on the
lumbar spine (Dolan and Adams, 1993; Tafazzol et al., 2014).

Subsequently, this study investigated how the upper and lower
lumbar regions contributed to spinal movement — relative to hip
motion, when performing a range of everyday tasks. Comparison
was drawn both to a traditional ‘single-joint’ measuring method,
and to previous studies evaluating a single, everyday tasks (i.e. sit-
to-stand).

2. Methods
2.1. Participants

Fifty-three male participants were recruited from Cardiff
University (age = 294 + 6.5 years; mass = 75.3 + 164 kg;
height = 1.69 + 0.15 m). No participants had a history of lower
extremity problems or spinal pain, surgery, rheumatological or
neurological disorders. All participants provided written informed
consent prior to data collection. The study was approved by the
Cardiff School of Engineering Ethics Committee.

2.2. Instrumentation

Data describing lumbar spine and hip kinematics were collected
using four tri-axial accelerometers (THETAMetrix, Waterlooville,
UK), each with a 24 mm? footprint. Each sensor was then placed,
using double-sided tape, over the spinous processes of S1, L3, T12
and the lateral aspect of the right thigh, mid-way between the
lateral epicondyle and greater trochanter on the iliotibial band (ITB)
(Fig. 1). Each accelerometer provided axial acceleration data per-
taining to absolute orientation (tilt), with respect to gravity. Sensors
were wired together in a ‘daisy chain’ arrangement and connected
to a PC, running data collection software via USB. Data were
captured at 30 Hz using the supplied 3A sensor software (THETA-
Metrix, Waterlooville, UK), and stored for retrospective processing.
This system has been found previously to have excellent repeated-
measures reliability relating to spinal movement analysis, with the
intraclass correlation coefficient ranging from 0.88 to 0.99, and a

standard error of measurement ranging from 0.4° to 5.2° (Alghtani
et al,, 2015).

2.3. Procedure

Participants' height and weight were determined prior to
sensor attachment. Participants completed a warm up exercise,
which included flexion, extension and rotation of the trunk, and
then a period of sensor familiarisation for the participants. Prior
to starting the actual trial, participants were asked to do one
trial to familiarise themselves with the experimental procedure.
Each participant stood barefoot on assigned markers and
focused on a wall marker, set at a height of 2 m, with arms
relaxed by their side. Participants were asked to complete for-
ward bending, backward bending, lifting an object (wooden box
with handles weighing 3 kg) from the floor and returning to a
standing position, moving from stand to sit on a stool and then
returning to standing. No further instructions on how to move
were provided.

2.4. Data analysis

Raw data were transferred to MATLAB (MathWorks Inc, Natick,
MA) and filtered at 6 Hz (low-pass, Butterworth) to remove high
frequency noise (Scholz et al., 2001). Sagittal plane absolute an-
gles for each sensor were determined, with respect to gravity and
regional ROM was defined as the relative motion between adja-
cent distal and proximal sensors (relative angles). The whole
lumbar spine was defined as the relative angle between the S1
and T12 sensors. The upper lumbar spine (ULS) was defined as
the relative angle between the T12 and L3 sensors, and lower
lumbar spine (Mills et al., 2007) as the relative angle between the
L3 and S1 sensors. As the whole lumbar spine consists of six
spinal joints and the ULS and LLS only three spinal joints, the
regions were normalised per segment (i.e. the WLS kinematics
divided by six and ULS and LLS kinematics divided by three). This
normalisation enabled comparisons between the regions to be
possible. The kinematics of ROM was determined as relative angle
across time and angular velocity calculated by 5-point differen-
tiation of the ROM-time data (Williams et al., 2013). The ratios of
lumbar-to-hip motion for each region (ULS, LLS and WLS) were
determined for each task. Therefore, the dependent variables for
this study were ROM, peak velocity (negative and positive) and
lumbar-hip ratio.

As this study aimed to evaluate the contribution of ULS and LLS
relative to hip motion, an ANOVA was used to test for differences
between the WLS, ULS and LLS (SPSS ver. 20). Post—hoc analysis
was applied using the Tukey procedure to determine the location of
any differences. Statistical significance was accepted at the 5% level
for all tests.

3. Results
3.1. ROM

The mean (SD) ROM (normalised per segment) are presented in
Table 1.

There was a significant difference in the ROM displayed by the
ULS compared with the WLS for flexion, lifting and sit-to-stand
(Table 2). Significant differences were also present between the
LLS and WLS for flexion and lifting (Table 2).

A significant difference was evident between the relative
contribution from the LLS and ULS across all movements (Table 2),
with the lower lumbar spine consistently contributing on average
63% of the total ROM (Fig. 2).
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Fig. 1. Schematic representation of the three spinal sensors, over processes T12, L3 and S1. A fourth sensor was placed on the lateral aspect of the thigh, midway between the lateral
epicondyle and greater trochanter on the iliotibial band (ITB). (a) Standing, (b) sitting.

Table 1

Contribution of the whole (WLS), upper (ULS) and lower (LLS) lumbar spinal regions.
Range of motion data it presented as the normalised mean (degrees), with the
standard deviation in parentheses.

Tasks WLS/6 ULS/3 LLS/3

Flexion 9.8 (2.4) 7.7 (3.4) 12.0 (4.4)

Extension —4.1(2.6) -2.8(3.5) -5.6 (4.3)

Lifting 9.3 (2.7) 7.2(3.3) 11.8 (4.6)

Stand-to-sit 7.3(2.8) 5.6 (3.3) 9.0 (4.9)

Sit-to-stand 7.3 (3.1) 5.4 (3.4) 8.9 (4.9)
Table 2

The p-values describing the statistical difference in range of motion data between
the ULS, LLS and WLS segments (UL = 3, LL = 3 and WL = 6 segments) for each
anatomical region, during a range of tasks. Statistical significance defined as
p < 0.05, with significant data identified using an*.

Segments Flexion Extension Lifting Stand-to sit  Sit-to stand
ULS/3 vs LLS/3 <.001*  <.001* <.001* <.001* <.001*
ULS/3 vs WLS/6  .006* 191 .009* .070 .037

LLS/3 vs WLS/6  .006* .058 .002* .073 .109

3.2. Ratio

The mean (SD) peak hip-lumbar ratio per segment ROM is dis-
played in Table 3.

A significant difference was evident between the WLS-hip ratio
and the LLS-hip ratio for the movement of lifting only. No differ-
ences were noted for the WLS-hip and ULS-hip ratio. There were
significant differences between the ULS-hip and LLS-hip ratio for all
movements except extension (Table 4).

3.3. Velocity

Mean (SD) peak velocity for each spinal region is presented in
Table 5.

A significant difference was evident between the WLS and LLS
peak velocity, but only for flexion. There were significant differ-
ences between the ULS and WLS for peak velocity for stand-to-sit
and lifting. No other tasks demonstrated ‘per segment’ peak ve-
locity differences. Significant differences were determined between

the ULS and LLS for peak velocity during all tasks, with the
exception of positive velocity during extension and negative ve-
locity during lifting (Table 6). The LLS achieved greater velocity for
all tasks when compared to the ULS with the magnitude of differ-
ence ranging from 37% to 63% greater (Fig. 2).

4. Discussion

This study used a novel methodology to investigate the ratio of
normalised lumbar motion, relative to hip motion. The results
demonstrate few differences between each of the WLS, ULS and LLS
versus hip motion, suggesting that either model may be effective in
exploring lumbar spine-hip ratios. Previous studies have explored
lumbar spine-hip ratios using a WLS model, with some reporting
slightly higher ratios for sit-to-stand and stand-to-sit (Shum et al.,
2005). Furthermore, our data indicates a proportionally greater
WLS contribution to extension (than the hip) as compared to other
studies (Lee and Wong, 2002; Wong and Lee, 2004), which may be
due to different patient characteristics or due to a lower mean age,
resulting in greater lumbar flexibility as displayed by the differ-
ences in lumbar extension ROM (Lee and Wong, 2002; Wong and
Lee, 2004).

Despite the lack of difference between the WLS, and the com-
bined ULS—LLS models, there were differences between the ULS
and LLS that suggest the relationships between the hip and these
specific lumbar regions are functionally different and unique. LLS-
hip ratios were consistently higher than the ULS-hip ratios, due
to the greater LLS ROM. This suggests that the relationship between
the separate regions of the lumbar spine and hip were not equivocal
and should be explored individually to appreciate the differences in
kinematic behaviour.

The calculation of ratios in this manner provides insight only to
the relationship of the terminal ranges, not the through range
phases. Angle—angle plots can provide a description of where the
ROM of each region is plotted against one another, thereby
revealing further insights into kinematic behaviour. Fig. 3 illustrates
the WLS plotted against the hip and the ULS-hip and LLS-hip plots
for comparison (the straight-line represents a 1:1 ratio for com-
parison). If a WLS model was used, the behaviour would demon-
strate that the hip and WLS move at a similar time and rate
throughout the movement phase i.e. broadly correlating with the
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Fig. 2. Relative contributions of the upper lumbar (UL) and lower lumbar (LL) spinal regions during a series of everyday tasks.

Table 3
The ratio of normalised ROM data for ULS, LLS and WLS, versus hip ROM data (de-
grees). The standard deviation is presented in parentheses.

Tasks (WLS/6)/Hip (ULS/3)/Hip (LLS/3)/Hip

Flexion 0.2 (0.1) 0.16 (0.1) 0.25(0.1)

Extension 0.3 (1.5) 0.2 (1.1) 0.5(2.3)

Lifting 0.16 (0.1) 0.1(0.1) 0.2 (0.1)

Stand-to-sit 0.1 (0.1) 0.1 (0.1) 0.16 (0.1)

Sit-to-stand 0.1 (0.1) 0.1 (0.1) 0.16 (0.1)
Table 4

A statistical evaluation of the differences in ratio per segment for normalised ROM to
hip ROM. Statistical significance defined as p < 0.05, with significant data identified
using an*.

Segments Flexion Extension Lifting Stand-to Sit-to
sit stand
(ULS/3)/Hip vs (LLS/3)/Hip  <.001* .556 <.001* .004* <.002*
(WLS/6)/Hip vs (ULS/3)/Hip .093* 910 .077 234 154
(WLS/6)/Hip vs (LLS/3)/Hip .093* .809 041 234 .260

aforementioned straight grey line; however, the regional break-
down shows a significantly greater contribution from the hip,
especially in the early phase of the motion for the LLS, where it is
more even in the same phase of motion for the ULS. Such behaviour
would not be visible with a WLS model.

The findings from the current study suggests that regional
breakdown of the lumbar spine is also important regarding veloc-
ity. Differences between the WLS and regional spinal models were
detected, as were differences between the LLS and ULS. This sug-
gests that the ULS and LLS are functionally different for the higher
order kinematics also. The velocities determined in this study were

Table 5
Velocity per segment (degrees/s) of ULS, LLS and WLS segments during four tasks.
Tasks velocities WLS/6 ULS/3 LLS/3
Flexion +ve vel 8.6 (2.8) 7.5(2.9) 10.5 (4.7)
—ve vel 8.3 (34) 7.4 (3.3) 9.6 (4.5)
Extension +ve vel 5.4 (3.0) 49 (3.0) 6.1 (4.3)
—ve vel 4.6 (2.8) 3.9(2.9) 5.5 (4.1)
Lifting +ve vel 10.0 (3.4) 8.4 (3.9) 10.5 (4.7)
—ve vel 9.3(3.1) 7.3 (3.3) 9.6 (4.5)
Stand-to-sit +ve vel 9.7 (3.3) 5.5(2.5) 9.0 (4.9)
—ve vel 5.9 (34) 3.3(1.4) 5.4(3.2)
Sit-to-stand +ve vel 4.3 (2.2) 3.1(1.9) 5.5(3.5)
—ve vel 7.5(3.3) 5.6 (2.8) 9.2 (5.0)
Table 6

The significant difference (p-value) considering velocity between the ULS, LLS and
WLS segments for each anatomical region during four tasks. Statistical significance
defined as p < 0.05, with significant data identified using an*.

Segments Flexion Extension Lifting Stand-to Sit-to
sit stand

—+ve velocity

ULS/3 LLS/3 <.001* 228 .021* <.001* <.001*
WLS/6 .246 771 110 <.001* .082

LLS/3 WLS/6 .019* .602 779 .600 <.060*

—ve velocity

ULS/3 LLS/3 .011* .039* .091 .001* .001*
WLS/6 421 535 .029* <.001* .054

LLS/3 WLS/6 218 .346 919 <.637 <.067

slightly greater than those reported in other studies for movements
at natural speeds (Shum et al.,, 2005; Williams et al., 2013). These
differences may be due to differences in characteristics of the
sample, such as age (younger in the current study), sex (male in the
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Fig. 3. The phase relationship of the lumbar spine to hip movement, with the grey line representing a sustained 1:1 relationship. These figures represent the movement phase of the

WLS (a), ULS (b) and LLS (c), relative to the hip.

current study) and the presence of pain (Williams et al., 2013). The
additional information gained from the regional breakdown of the
lumbar spine identified that the LLS consistently moved at greater
velocities. The authors are not aware of this having previously re-
ported in the literature, though this is important since it suggests a
non-even split of velocity throughout the ULS and LLS, a finding
masked by a traditional single segment model.

This study also investigated the contribution of the ULS and
LLS regions, relative to hip motion, when performing a range of
everyday tasks. Modelling the lumbar spine as two distinct regions
identified differences in the normalised (i.e. per-segment) ROM,
with the LLS contribution greater than ULS by at least 2.4°, and WLS
by 1.5°, over all tasks. ROM percentages per LLS segment were
greater than ULS over all five tasks (Fig. 2). Hence, it was evident
that modelling the WLS underestimated the LLS motion by as much
as 37%, and over-estimated the ULS motion by as much as 45%.
Whilst this finding is in agreement with previous studies (Williams
et al., 2010; Leardini et al., 2011; Williams et al., 2012; Parkinson
et al,, 2013; Williams et al., 2014), the current study was the first
to adopt a method of normalisation to enable a quantitative com-
parison. The findings are consistent with studies adopting stereo-
radiography (Pearcy et al., 1985) and cadaveric testing (Yamamoto
et al., 1989), contributing to the increasing body of evidence that
suggests a non-uniform breakdown of ROM contribution for the
lumbar segments. Subsequently, this indicates that simply model-
ling the lumbar spine as a whole region may omit some important
kinematic information, and under-estimate the LLS contribution.

The findings of the current study have important clinical rami-
fications. Clinicians are beginning to advocate the assessment of
two separate functional regions within the Iumbar spine
(O'Sullivan, 2005; Dankaerts et al., 2006), with the belief that these
are functionally individual. This study confirms that indeed there
are functional differences in the ROM of lumbar spine models, and
velocity of motion during a range of functional tasks and provides
support for the use of a more detailed spinal kinematic model.
Greater contributions to motion from the lower lumbar spine, as
well as greater movement velocities, may help to explain increased
prevalence of low back pain or pathological change in this spinal
region more than the upper lumbar (Biering-Sgrensen, 1983;
Beattie et al., 2000). Usually, greater degeneration takes place
in the lower lumbar spinal segments (Twomey and Taylor, 1987;
Quack et al., 2007) and it is assumed that this is due to greater

mechanical stress upon this region (Adams and Hutton, 1983).
Assessment of the lumbo-pelvic rhythm has also been suggested
during clinical assessment of the back (O'Sullivan, 2005), as the hip
motion effects the resultant bending stresses (Dolan and Adams,
1993) and muscle activities, as well as the forces acting on the
lumbar spine (McGill et al., 2000; O'Sullivan et al., 2002; Kaminska
et al., 2010). Insights into lumbo-pelvic rhythm can be afforded
through the determination of ratios and angle—angle plots, and this
study provides novel detail regarding the regional spinal ratios.

This study provides further evidence for the separation of the
whole lumbar spine into smaller regional sections, as suggested
previously (Parkinson et al., 2013), to truly determine detailed ki-
nematic information for the lumbar spine.

Limitations of the current study include a single sex population
preventing the extrapolation of the findings to females. The sample
was representative of a young non-impaired population and find-
ings relating to more elderly, or those in pain or impaired, may
differ from the current findings. Analysis was limited to the sagittal
plane and more detailed 3-dimensional kinematics would provide
detail regarding out of plane motions.

5. Conclusion

The findings of the current study suggest modelling the lumbar
spine as two distinct regions demonstrates normalised kinematic
differences compared to treating the lumbar spine as a whole. It is
evident that modelling the lumbar spine as a whole entity under-
estimates the contribution from the LLS and over-estimates the
contribution from the ULS. This suggests that to model the lumbar
spine as a whole may omit some important kinematic information.
Clinicians should be aware of the differences between the regions
to better inform their clinical assessment of the lumbar spine.
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