568 research outputs found
A nomological network of e-government evaluation
An emergent epistemology has been developing in the field of e-government evaluation as disparate attempts are made in the literature to evaluate and measure different aspects of e-government. To formalize it, this paper proposes a nomological network as an organizing concept for plotting e-government evaluation research. It proposes different forms of evaluation, pre-evaluation, ex-ante, in-itenere, and ex-post as fulfilling different and complementary roles in e-government evaluation. E-Government concepts such as agenda, strategy, processes, and performance are plotted within the nomological network with matching modes of evaluation
T-government for benefit realisation
This paper proposes a model for t-Government and highlights the research agenda needed to
increase understanding of transformational government and the processes involved in
furthering the agenda of the t-Government. In particular, both an operational and a conceptual
model for the effective involvement of citizens and businesses in government functioning
have been proposed. This will help to define an agenda for t-Government research that
emerges from national UK strategy and policy for e-Government. The main threads of t-
Government encompass: (1) A citizen-centric delivery of public services or e-inclusion, (2) A
shared services culture to maximize value added to clients, (3) The effective delivery and
management of resources and skills within government or professionalism. All three threads
should be addressed principally from the perspectives of delivery, evaluation and participation
in view of benefit realisation as envisioned by Government strategic planning and policy
directives (CabinetOffice, 2005). The management of change dimension of these phenomena
have been included in the research agenda. In particular, research is needed to reshape the
discourse towards emphasising a citizen centric approach that defines, develops, and benefits
from public service. Decision makers in Government will need models of Governance that
fulfil transformational objectives. They will also need models of benefits realisation within a
strategic Governance framework. It has been argued that t-Government research should be
addressing these relative voids
Optimization of liquid crystal structures for real time holography applications
In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time. (C) 2011 Optical Society of Americ
Adaptive maximum power point tracking using neural networks for a photovoltaic systems according grid
Introduction. This article deals with the optimization of the energy conversion of a grid-connected photovoltaic system. The novelty is to develop an intelligent maximum power point tracking technique using artificial neural network algorithms. Purpose. Intelligent maximum power point tracking technique is developed in order to improve the photovoltaic system performances under the variations of the temperature and irradiation. Methods. This work is to calculate and follow the maximum power point for a photovoltaic system operating according to the artificial intelligence mechanism is and the latter is used an adaptive modified perturbation and observation maximum power point tracking algorithm based on function sign to generate an specify duty cycle applied to DC-DC converter, where we use the feed forward artificial neural network type trained by Levenberg-Marquardt backpropagation. Results. The photovoltaic system that we chose to simulate and apply this intelligent technique on it is a stand-alone photovoltaic system. According to the results obtained from simulation of the photovoltaic system using adaptive modified perturbation and observation – artificial neural network the efficiency and the quality of the production of energy from photovoltaic is increased. Practical value. The proposed algorithm is validated by a dSPACE DS1104 for different operating conditions. All practice results confirm the effectiveness of our proposed algorithm.Вступ. У статті йдеться про оптимізацію перетворення енергії фотоелектричної системи, підключеної до мережі. Новизна полягає у розробці методики інтелектуального відстеження точок максимальної потужності з використанням алгоритмів штучної нейронної мережі. Мета. Методика інтелектуального відстеження точок максимальної потужності розроблена з метою поліпшення характеристик фотоелектричної системи в умовах зміни температури та опромінення. Методи. Робота полягає в обчисленні та відстеженні точки максимальної потужності для фотоелектричної системи, що працює відповідно до механізму штучного інтелекту, і в останній використовується адаптивний модифікований алгоритм збурення та відстеження точок максимальної потужності на основі знаку функції для створення заданого робочого циклу стосовно DC-DC перетворювача, де ми використовуємо штучну нейронну мережу типу «прямої подачі», навчену зворотному розповсюдженню Левенберга-Марквардта. Результати. Фотоелектрична система, яку ми обрали для моделювання та застосування цієї інтелектуальної методики, є автономною фотоелектричною системою. Відповідно до результатів, отриманих при моделюванні фотоелектричної системи з використанням адаптивних модифікованих збурень та спостереження – штучної нейронної мережі, ефективність та якість виробництва енергії з фотоелектричної енергії підвищується. Практична цінність. Запропонований алгоритм перевірено dSPACE DS1104 для різних умов роботи. Усі практичні результати підтверджують ефективність запропонованого нами алгоритму
Scaling of the electron dissipation range of solar wind turbulence
Electron scale solar wind turbulence has attracted great interest in recent
years. Clear evidences have been given from the Cluster data that turbulence is
not fully dissipated near the proton scale but continues cascading down to the
electron scales. However, the scaling of the energy spectra as well as the
nature of the plasma modes involved at those small scales are still not fully
determined. Here we survey 10 years of the Cluster search-coil magnetometer
(SCM) waveforms measured in the solar wind and perform a statistical study of
the magnetic energy spectra in the frequency range []Hz. We show that a
large fraction of the spectra exhibit clear breakpoints near the electon
gyroscale , followed by steeper power-law like spectra. We show that
the scaling below the electron breakpoint cannot be determined unambiguously
due to instrumental limitations that will be discussed in detail. We compare
our results to recent ones reported in other studies and discuss their
implication on the physical mechanisms and the theoretical modeling of energy
dissipation in the SW.Comment: 10 pages, submitte
Investigation of superfast deposition of metal oxide and Diamond-Like Carbon thin films by nanosecond Ytterbium (Yb+) fiber laser
Metal oxide (MOx, M: titanium, magnesium) and Diamond-Like Carbon (DLC) thin films were synthesized by Pulsed Laser Deposition (PLD) at room temperature and low vacuum of 2 Pa for MOx and vacuum of 4 x 10(-3) Pa for DLC films. A fiber based Ytterbium (Yb+) laser operating in the nanosecond regime at a repetition rate of 20 kHz was used as an ablation source. Dense and smooth thin films with a thickness from 120 to 360 nm and an area of up to 10 cm(2) were deposited on glass and stainless steel substrates at high growth rates up to 2 nm/s for a laser intensity of 10-12 J/cm(2). The thin films synthesis was compared for two fiber laser modes of operation, at a repetition rate of 20 kHz and with an additional modulation at 1 kHz. The morphology, chemical composition and structure of the obtained thin films were evaluated using optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Raman spectroscopy. The morphology of the MOx thin films and the deposition rate strongly depend on the fiber laser mode of operation. Very smooth surfaces were obtained for the metal oxide thin films deposited at lower deposition rates in the modulation mode at 1 kHz. The effect of the substrate on the DLC film structure was studied. The films deposited on dielectric substrates were identified as typical tetrahedral (ta-C) DLC with high sp(3) content. DLC films on metal substrates were found typical a-C amorphous carbon films with mixing sp(2)/sp(3) bonds
Laboratory selection of trypanosomatid pathogens for drug resistance
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory
Linear and nonlinear optical absorption characterization of natural laccaic acid dye
We report on the optical performances of laccaic acid dye in solution at different concentrations and dye–poly(methyl methacrylate) composite thin films. The linear spectral characteristics including optical constants, i.e. refractive index (n) and extinction coefficient (k), were carried out in a comprehensive way through absorbance, fluorescence and ellipsometric studies. The nonlinear optical parameters such as nonlinear absorption coefficient β eff (or β 2), the imaginary third-order susceptibility (Im[χ (3)]) and the imaginary part of second-order hyperpolarizability (γ) of the samples were evaluated using the open-aperture Z-scan technique with a laser pulse duration of 10 ns at 532 nm wavelength. The corresponding numerical values of these parameters were of 10−10, 10−11 and 10−32 order, respectively. Two-photon absorption was revealed to be the main driving physical mechanism in the nonlinear response. This suggests that laccaic acid dye can be a potential candidate for NLO materials application
Influence of temperature on dynamics of birefringence switching in photochromic nematic phase
We present results of dynamic and fast switching of birefringence in a photochromic liquid-crystalline system as a function of the sample temperature. The system consists of photochromic molecules of 4-heptyl-4-methoxyazobenzene showing a liquid-crystalline nematic state close to room temperature. An experiment of dynamic birefringence switching was done in optical Kerr-effect set-up, where for the sample excitation, a picosecond-pulsed laser was used. Measurements were done for different temperatures of the sample in the liquid-crystalline nematic phase. We have proposed a mathematical model of dynamic, fast, and fully reversible birefringence changes. Theoretical estimations and experimental results have shown very good agreement. (C) 2011 American Institute of Physics. [doi:10.1063/1.3665123
- …