1,281 research outputs found

    Attribute-Based Encryption Optimized for Cloud Computing

    Get PDF
    Abstract. In this work, we aim to make attribute-based encryption (ABE) more suitable for access control to data stored in the cloud. For this purpose, we concentrate on giving to the encryptor full control over the access rights, providing feasible key management even in case of multiple independent authorities, and enabling viable user revocation, which is essential in practice. Our main result is an extension of the decentralized CP-ABE scheme of Lewko and Waters [LW11] with identity-based user revocation. Our revocation system is made feasible by removing the computational burden of a revocation event from the cloud service provider, at the expense of some permanent, yet acceptable overhead of the encryption and decryption algorithms run by the users. Thus, the computation overhead is distributed over a potentially large number of users, instead of putting it on a single party (e.g., a proxy server), which would easily lead to a performance bottleneck. Besides describing our scheme, we also give a formal proof of its security in the generic bilinear group and random oracle models.

    Spectroscopic confirmation of the planetary nebula nature of PM1-242, PM1-318 and PM1-333 and morphological analysis of the nebulae

    Full text link
    We present intermediate resolution long-slit spectra and narrow-band Halpha, [NII] and [OIII] images of PM1-242, PM318 and PM1-333, three IRAS sources classified as possible planetary nebulae. The spectra show that the three objects are true planetary nebulae and allow us to study their physical properties; the images provide a detailed view of their morphology. PM1-242 is a medium-to-high-excitation (e.g., HeII4686/Hbeta ~0.4; [NII]6584/Halpha ~0.3) planetary nebula with an elliptical shape containing [NII] enhanced point-symmetric arcs. An electron temperature [Te([SIII])] of ~10250 K and an electron density [Ne([SII])] of ~2300 cm-3 are derived for PM1-242. Abundance calculations suggest a large helium abundance (He/H ~0.29) in PM1-242. PM1-318 is a high-excitation (HeII4686/Hbeta ~1) planetary nebula with a ring-like inner shell containing two enhanced opposite regions, surrounded by a fainter round attached shell brighter in the light of [OIII]. PM1-333 is an extended planetary nebula with a high-excitation (HeII4686/Hbeta up to ~0.9) patchy circular main body containing two low-excitation knotty arcs. A low Ne([SII]) of ~450 cm-3 and Te([OIII]) of ~15000 K are derived for this nebula. Abundance calculations suggest that PM1-333 is a type I planetary nebula. The lack of a sharp shell morphology, low electron density, and high-excitation strongly suggest that PM1-333 is an evolved planetary nebula. PM1-333 also shows two low-ionization polar structures whose morphology and emission properties are reminiscent of collimated outflows. We compare PM1-333 with other evolved planetary nebulae with collimated outflows and find that outflows among evolved planetary nebulae exhibit a large variety of properties, in accordance with these observed in younger planetary nebula.Comment: Accepted in The Astronomical Journal, 23 pages, 6 figure

    The Role of Dopamine in the Stimulant Characteristics of Novel Psychoactive Substances (NPS)—Neurobiological and Computational Assessment Using the Case of Desoxypipradrol (2-DPMP)

    Get PDF
    Stimulant drugs, including novel psychoactive substances (NPS, formerly “legal highs”) have addictive potential which their users may not realize. Stimulants increase extracellular dopamine levels in the brain, including the reward and addiction pathways, through interacting with dopamine transporter (DAT). This work aimed to assess the molecular and atomistic mechanisms of stimulant NPS actions at DAT, which translate into biological outcomes such as dopamine release in the brain’s reward pathway. We applied combined in vitro, in vivo, and in silico methods and selected 2-diphenylmethylpiperidine (2-DPMP) as an example of stimulant NPS for this study. We measured in vitro binding of 2-DPMP to rat striatum and accumbens DAT by means of quantitative autoradiography with a selective DAT-radioligand [125I]RTI-121. We evaluated the effects of intravenously administered 2-DPMP on extracellular dopamine in the accumbens-shell and striatum using in vivo microdialysis in freely moving rats. We used dynamic modeling to investigate the interactions of 2-DPMP within DAT, in comparison with cocaine and amphetamine. 2-DPMP potently displaced the radioligand in the accumbens and striatum showing dose-dependence from 0.3 to 30 μM. IC50 values were: 5.65 × 10-7M for accumbens shell and 6.21 × 10-7M for dorsal striatum. Dose-dependent responses were also observed in accumbens-shell and striatum in vivo, with significant increases in extracellular dopamine levels. Molecular dynamics simulations identified contrasting conformational changes of DAT for inhibitors (cocaine) and releasers (amphetamine). 2-DPMP led to molecular rearrangements toward an outward-facing DAT conformation that suggested a cocaine-type effect. The present combination of molecular modeling with experimental neurobiological procedures allows for extensive characterization of the mechanisms of drug actions at DAT as the main molecular target of stimulants, and provides an insight into the role of dopamine in the molecular and neurobiological mechanisms of brain responses to stimulant NPS that have addictive potential. Such knowledge reveals the risk of addiction related to NPS use. The research presented here can be adapted for other psychostimulants that act at their membrane protein targets

    Analysis of MAGSAT data of the Indian region

    Get PDF
    Progress in the development of software for reading MAGSAT data tapes and for the reduction of anomaly data, and in the preparation of data for magnetic anomaly maps is reported

    The dust envelope of the pre-planetary nebula IRAS19475+3119

    Full text link
    We present the spectral energy distribution (SED) of the pre-planetary nebula, IRAS 19475+3119 (I19475), from the optical to the far-infrared. We identify emission features due to crystalline silicates in the ISO SWS spectra of the star. We have fitted the SED of I19475 using a 1-D radiative transfer code, and find that a shell with inner and outer radii of 8.8X10^{16} and 4.4X10^{17}cm, and dust temperatures ranging from about 94K to 46K provide the best fit. The mass of this shell is greater than/equal to 1[34cm^{2}g^{-1}/kappa(100micron)][delta/200]M_Sun, where kappa(100micron) is the 100micron dust mass absorption coefficient (per unit dust mass), and delta is the gas-to-dust ratio. In agreement with results from optical imaging and millimeter-wave observations of CO emission of I19475, our model fits support an r^{-3} density law for its dust shell, with important implications for the interaction process between the fast collimated post-AGB winds and the dense AGB envelopes which results in the observed shapes of PPNs and PNs. We find that the observed JCMT flux at sub-millimeter wavelengths (850micron) is a factor ~ 2 larger than our model flux, suggesting the presence of large dust grains in the dust shell of I19475 which are not accounted for by our adopted standard MRN grain size distribution.Comment: 38 pages, 8 figures. Accepted for publication in Ap

    Mira's wind explored in scattering infrared CO lines

    Get PDF
    We have observed the intermediate regions of the circumstellar envelope of Mira (o Ceti) in photospheric light scattered by three vibration-rotation transitions of the fundamental band of CO, from low-excited rotational levels of the ground vibrational state, at an angular distance of beta = 2"-7" away from the star. The data were obtained with the Phoenix spectrometer mounted on the 4 m Mayall telescope at Kitt Peak. The spatial resolution is approximately 0.5" and seeing limited. Our observations provide absolute fluxes, leading to an independent new estimate of the mass-loss rate of approximately 3e-7 Msun/yr, as derived from a simple analytic wind model. We find that the scattered intensity from the wind of Mira for 2" < beta < 7" decreases as beta^-3, which suggests a time constant mass-loss rate, when averaged over 100 years, over the past 1200 years.Comment: accepted for publication in the Astrophysical Journa

    The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    Full text link
    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.Comment: 41 pages, 6 figures; submitted to the Astronomical Journa
    • …
    corecore