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Abstract 

Development of methods to spray form materials by precisely controlled deposition of 

droplets can result in new manufacturing processes which offer improved metallurgical 

performance and reduced production costs. These processes require a more detailed 

knowledge of the fluid mechanics, heat transfer and solidification that occur during 

droplet spreading. Previous work using computer simulations of this process have been 

difficult to implement and have required long running times. This paper examines the use 

of an alternative, simplified, method developed by Madjeski for solving for the problem 

of droplet spreading and solidification. These simplifications reduce the overall splat 

spreading and solidification problem to a closed-form differential equation. This 

differential equation is then solved under various conditions as reported from recent 

publications of experimental and numerical results of drop analysis. The results from the 

model are compared in terms of maximum splat diameter, minimum splat thickness, and 

time for the droplet spreading to reach 95% of the maximum diameter. The results 

indicate that the accuracy of the model can be improved by accounting for energy losses 

in the initial rate of droplet spreading. The model results show that the predictions of 

experimental results are improved to within 30% over a wide range of conditions. 
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solid phase thermal diffusivity 
thickness of the liquid layer 
splat diameter 
non-dimensional splat diameter, d/D 
initial droplet diameter 
ratio of droplet energy after impact to energy before impact 
freezing parameter, Equation (2) 
Peclet number, wD/a 
cylinder radius 
initial cylinder ratio 
Reynolds number, wDp/p 
time 
non-dimensional time, tw/D 
constant in Equation (3) 
droplet speed before impact 
Weber number, pDw2/o 
solid layer thickness 
splat height 
non-dimensional splat height, z/D 
ratio RJD 
liquid phase density 
solid phase density 
surface tension 

Introduction 

The problem of liquid droplets impinging on a solid surface has practical applications to 

multiple processes such as spray cooling, spray forming, microfabrication, microcasting, 

ink jet technology, and precision solder droplet dispensing. An improved control of these 

processes requires a more detailed knowledge of the fluid mechanics, heat transfer and 

solidification that occur during droplet spreading. 



The process of droplet spreading and solidification is difficult to analyze due to the effect 

of multiple factors, including inertia, viscosity, gravity, surface tension, wetting, heat 

transfer (mainly by conduction and radiation), solidification (possibly under non- 

equilibrium conditions, Kang et aL, 1995), phase transitions in the solid phase (Amon et 

aL, 1996), and interactions with other droplets (Kang et al, 1994). 

Some numerical analyses of the process of droplet spreading have been presented to date 

(Trapaga and Szekely, 1991; Trapaga et aL, 1992; Fukai et al., 1993; Fukai et al, 1995; 

Waldvogel et aL, 1996; Zhao et aL, 1996; Waldvogel and Poulikakos, 1997; Pasandideh- 

Fard et aL, 1998). These solve for the continuity equation, for the Navier-Stokes 

equations, and for the energy equation in the liquid and solid phases (and ideally in the 

substrate too). The solution of these equations is complicated by the presence of 

phenomena such as a f?ee surface, conduction heat transfer through a contact resistance, a 

rapidly deforming geometry with a big aspect ratio, and liquid-solid and solid-solid phase 

transitions. As a result, computer simulations have been difficult to implement and have 

required long running times. 

An alternative, simplified, method for solving for the problem of droplet spreading and 

solidification has been presented by Madejski (1976). This method uses an overall energy 

balance for the droplet. The initial kinetic energy of the droplet is converted into potential 

(surface) energy, or is dissipated due to viscous effects as the droplet spreads. The 



balance between kinetic, potential and dissipated energy determines the rate of droplet 

spreading. Solidification may result due to contact with a cold substrate. 

Madejski’s method uses a series of simplifications to reduce the overall splat spreading 

and solidification problem to a closed-form differential equation. The main assumptions 

are: 

1. The droplet transforms instantly from a sphere into a cylinder when it impacts the 

substrate. No energy is dissipated during this initial transformation of the droplet. 

2. The Navier-Stokes equations are not solved. Instead, a velocity field is assumed. The 

velocity profile selected is a simple velocity field that satisfies the continuity 

equation. 

3. The droplet superheat disappears instantly when the droplet touches the substrate. 

Contact between the droplet and the substrate is assumed to be perfect (infinite 

contact heat transfer coefficient). 

4. For cases that consider freezing, it is assumed that the solidification starts 

immediately after impingement. The solid layer thickness at any radial position is 

proportional to the square root of the time elapsed since the moment in which the 

droplet touched that radial position. The proportionality constant is calculated from a 

solution to the Stefan problem for a semi-infinite medium (Carslaw and Jaeger, 

1990). 

5. The liquid (unfrozen) phase has a thickness that is a function of time, but not a 

function of position along the splat. 



6. The effect of surface wetting and contact angles is neglected. 

7. Droplets do not break up when they collide with the substrate. 

Madejski’s method takes into account three of the most important effects in droplet 

spreading: viscous dissipation, surface tension, and freezing. This results in a very 

complete method, considering the simplicity of the analysis. However, many important 

effects are not considered, These include droplet superheat, thermal contact resistance 

(Liu et aL, 1995), substrate melting, droplet recoil (Fukai et aL, 1993), and wetting effects 

(Fukai et aL, 1995). 

Some improvements on Madejski’s method have been published in the literature. 

Markworth and Saunders (1992) developed an improved velocity field for application to 

Madejski’s method. The velocity field is improved because it not only satisfies the 

continuity equation. It also satisfies the appropriate no stress boundary condition at the 

free surface. The new velocity field can be used to derive new versions of Madejslci’s 

equations. Range1 and Bian (1997) have published the resulting equations. Range1 and 

Bian (1997) have also extended Madejski’s method by using the full energy equation and 

an energy balance to track the solid-liquid interface. The extended method can therefore 

take into account droplet superheat and substrate melting. Thermal contact resistance 

could also be implemented in the modeL 

The main advantage of Madejski’s method is its closed form, which is very simple to use. 

Only three non-dimensional parameters (the Reynolds number, Re; the Weber number, 



We; and a freezing parameter, k) are enough to determine droplet spreading with 

Madejski’s method. In contrast, detailed numerical analyses of the droplet spreading and 

solidification require a major effort for implementation and long computer run times. 

Detailed numerical solutions may also be subjected to limitations in accuracy, due to an 

inappropriate knowledge of the wetting and heat transfer interactions between the droplet 

and the substrate. These factors are recognized to be very important in the process of 

droplet spreading, and obtaining real data for practical applications is a challenge 

(Pasandideh-Fard et al, 1998). 

While a detailed analysis is necessary in many cases, it is important to determine the 

accuracy of Madejski’s model as compared to existing experimental and numerical data. 

This comparison may help in determine under which regimes Madejski’s model gives the 

best results, and under which regimes it may be used at least as a preliminary tool in 

determining droplet spreading parameters. 

This report presents a comparison of the results obtained with Madejski’s model and 

those obtained in recent publications, both experimental and numerical Three 

magnitudes are compared: maximum splat diameter, minimum splat thickness, and time 

for droplet spreading to 95% of the maximum diameter. 



Analysis 

This work uses Madejski’s (1976) method with the improved velocity profile presented 

by Markworth and Saunders (1992). The Schwarz solution (Carslaw and Jaeger, 1990) is 

used instead of the Neumann solution to predict the freezing rate, according to the 

recommendation of Range1 and Bian (1997). The full energy equations applied in the 

solution of Range1 and Bian are not used in this work. 

An additional modification to Madejski’s method is done beyond those discussed in the 

previous paragraph Madejski (1976) defines the parameter E as E+/D, where D is the 

droplet diameter before impact and R,, is the initial radius of the cylinder immediately 

after impact (it is assumed that the spherical droplet becomes a cylinder immediately 

upon impact; see Assumption 1 in the Introduction). Madejski originally used &=0.5. 

Range1 and Bian later used &=0.74, which satisfies the equation of conservation of 

potential energy. However, using &=0.74 results in considerable instantaneous spreading 

of the droplet upon impact. Conservation of mass indicates that, for &=0.74, the height of 

the cylinder immediately after impact, b, is only 30% of the droplet diameter before 

impact. This results in a very short time for completion of droplet spreading under many 

conditions. 

In this work, ~=0.408 is used. This results in an initial cylinder height b=D, and a much 

improved prediction of the time for droplet spreading. Potential energy is not conserved 

during the impact. However, total energy (kinetic+potential) can still be conserved if the 



equation for the initial speed of droplet spreading (Equation (16) in Range1 and Bian, 

1997) is modified appropriately. The new version of this equation is: 

where We is the Weber number, defined as We=plDw2/o, w is the droplet velocity before 

impact, pr is the liquid density and 0 is surface tension. The non-dimensional freezing 

parameter k is defined as (Madejski, 1976): 

k&~~&i!L m?- d Pl Pe 
(2) 

where Pe is the Peclet number, defined as P-D/a, a is the thermal diffussivity of the 

solid layer, and U is the proportionality constant in the solid layer thickness equation, 

obtained from the solution to the Schwarz problem (Carslaw and Jaeger, 1990). 

y=UJat (3) 

Madejski’s equations are solved with Euler’s method for solving the differential equation. 

The integral equation that determines the thickness of the solid layer is solved with 

Simpson’s rule. The program was tested for time step size sensitivity by halving the time 

step until a negligible change in the solution was obtained. Typical running time is of the 

order of 1 minute in a current engineering workstation. 



A survey of the recent literature on splat formation was conducted, and multiple 

experimental and numerical results were collected from the available papers. Results 

were collected for maximum splat diameter, minimum splat thickness, and time for 

reaching 95% of the maximum diameter. The time for 95% of the maximum diameter is 

used because this is much easier to determine than the time for reaching the maximum 

diameter (Fukai et aL, 1995). 

The conditions and the results found in the references are converted to non-dimensional 

parameters (Re, We, k, d*=d/D, z*=zJD, and t*=tw/D). A summary of all the information 

collected from the references is included in Table 1. Much of the information was 

collected from figures, and it is therefore subjected to reading errors, especially in the 

case of the splat thickness, due to the small values frequently obtained for it. Some of the 

spaces are empty because these values were not reported in the references. 

Detailed analyses and experiments often show droplet recoil due to surface tension 

effects, especially for low Weber numbers. Madejski’s model does not predict droplet 

recoiL For this reason, the splat properties listed in Table 1 do not represent final, 

equilibrium splat conditions. Instead, they represent values at the end of the fast splat 

expansion cycle, before recoil starts. No comparison between Madejski’s method and 

detailed models is possible after the recoil process starts. 



Most of the data found in the literature are obtained for isothermal droplet spreading, at 

conditions for which no freezing occurs. A few cases with freezing are also reported. 

The literature survey used for this report is by no means exhaustive, but the data cover a 

wide range of Reynolds and Weber numbers, and should give a good indication of the 

accuracy of Madejski’s method under multiple regimes. 

Figure 1 shows non-dimensional maximum droplet diameter (d? as a function of 

Reynolds number and Weber number. The figure shows all the points listed in Table 1, 

with the original reference identified by symbols. The numbers located next to the 

symbols indicate the maximum splat diameter obtained from the references. A range of 

values is given for points that originate from a single reference and are located very close 

to each other in the figure (data from Fukai et aL, 1995, and from Pasandideh-Fard et aL, 

1998). The figure shows the wide ranges of Reynolds ( 102- 106) and Weber (l- 104) 

numbers studied in the literature. 

The lines in the figure show contours of constant maximum splat diameter, calculated by 

Madejski’s model, assuming no freezing conditions @GO). Both the lines and the symbols 

show that the maximum splat diameter tends to grow as the Reynolds and the Weber 

numbers increase. Some anomalous results are easily identified in the figure. These 

include the values reported by Zhao et aL, 1996, which appear high compared to the 

values for nearby points reported in other references. This may be due to effects, such as 

surface wetting, which cannot be described in terms of the Reynolds and the Weber 

numbers alone. Another effect not properly described by the Reynolds and the Weber 



numbers is freezing, and the points with freezing (open symbols in the figure) have 

maximum diameters that are lower than the neighboring points with no freezing. 

Figure 1 indicates that there is good qualitative agreement between Madejski’s method 

and the existing literature. Figure 2 is included to facilitate a quantitative comparison 

between the references and Madejski’s modeL Figure 2 shows the ratio of the maximum 

droplet diameter calculated from Madejski’s model and the maximum droplet diameter 

reported in the references. The figure shows that Madejski’s model tends to overestimate 

the maximum splat diameter. Figure 2 shows that the best agreement is obtained for the 

data of Trapaga and Szekely (1992) and for the data of Fukai et aL (1995). The agreement 

improves as the Reynolds and Weber numbers increase. The results for the freezing cases 

are also overestimated by 30-60%. 

Figure 3 shows the ratio of the minimum splat thickness calculated by Madejski’s model 

and the minimum splat thickness as reported in the references. Some points in the figure 

do not include a number because the minimum splat thickness is not reported in these 

references. The figure indicates that Madejski’s model underestimates the minimum splat 

thickness in tiost all cases. This is consistent with the overestimation of the splat 

diameter shown in Figure 2, since a bigger splat is necessarily thinner. The relative error 

in using Madejski’s model for predicting splat thickness is greater than the relative error 

in predicting the splat diameter (Figure 2). This is due in part to the difficulty of reading 

the small values of the splat thickness from plots presented in the references. 



Figure 4 shows the ratio of the time for reaching 95% of the maximum splat diameter 

calculated by Madejski’s model and the time for reaching 95% of the maximum splat 

diameter reported in the literature. Unlike figures 2 and 3, this figure does not show a 

definite trend. Madejski’s model underpredicts the time for some points and over-predicts 

the time for some other points. The trend seems to depend more on the original reference 

than on the location on the Reynolds-Weber plane. Spreading time is underestimated 

when compared with the results of Trapaga and Szekely (1991), but it is overestimated 

when compared to those of Fukai et aL, (1993). Very good agreement is once more 

obtained with the results of Fukai et aL (1995). 

Figures 5 through 7 show a comparison of the splat spreading as a function of time 

between Madejski’s model and some of the references. Figure 5 shows the spreading 

process for splats at the conditions studied by Trapaga and Szekely (1991). The figure 

shows the results of Trapaga and Szekely with solid lines and the results of Madejski’s 

method with dotted lines. Madejski’s method under-predicts the initial slope of the lines, 

but the slope then remains fairly constant for a long period of time, resulting in foal 

diameters that closely predict those of Trapaga and Szekely. The lines from Trapaga and 

Szekely have slopes that drop rapidly. This is due to substantial viscous dissipation in the 

early stages of the spreading process. In contrast, Madejski’s method assumes that no 

energy losses occur in the initial spreading of the droplet. 

Figure 6 shows a comparison of the results of Madejski’s model with those of Waldvogel 

et aL (1996). The figure shows the results of Waldvogel et aL with solid lines and the 



results of Madejski’s method with dotted lines. Figure 2 shows that the conditions used 

by Waldvogel et al. (low Reynolds and Weber number) result in a poor agreement with 

Madejski’s modeL Figure 6 shows that Waldvogel et aL report substantial droplet recoil, 

down to diameters lower than the original droplet diameter in some cases. As previously 

discussed, Madejski’s model does not predict droplet recoil in its current form. Droplet 

solidification should reduce the amount of droplet recoil and improve the accuracy of 

Madejski’s model for low Reynolds and Weber number cases. Figure 6 shows once more 

that Madejski’s model underpredicts the initial rate of viscous energy dissipation. As a 

consequence, the slopes of the Lines remain constant for a long time compared to those of 

Waldvogel et aL 

Figure 7 shows a comparison of the results of Madejski’s model with those of 

Pasandideh-Fard et aL (1998). The figures show the results of Pasandideh-Fat-d et aL with 

solid lines and the results of Madejski’s method with dotted lines. The results of 

Pasandideh-Fard et aL presented in the figure include the effect of freezing. Some droplet 

recoil is observed in the results of Pasandideh-Far-d et aL, although the magnitude of the 

recoil is much reduced compared to the results of Waldvogel et aL (1996) shown in 

Figure 6, partly due to the higher Reynolds number and partly due to freezing. Figure 7 

shows that Madejski’s model predicts the freezing time reasonably welL This is due in 

part to the use of near zero initial droplet superheat by Pasandideh-Fard et aL As 

previously discussed, Madejski’s freezing model neglects superheat. The effect of droplet 

superheat could be estimated and incorporated in Madejski’s model, as previously shown 

by Rangel and Bian (1997). 



The previous figures indicate that Madejski’s model overpredicts the splat diameter, and 

as a consequence it underpredicts the splat thickness. This is due in part to the assumption 

that the droplet turns into a cylinder immediately upon impact with no energy losses in 

the process. More detailed analyses (Trapaga and Szekely, 1991) indicate that there is 

substantial energy dissipation in the early stages of splat spreading. Including some 

energy losses in Madejski’s model is certain to result in better predictions. Energy losses 

in the initial stage of splat spreading can be included in Madejski’s model by modifying 

the initial rate of droplet spreading (Equation 1). The new form of this equation is: 

(4) 

The rest of the formulation is not changed. In Equation (4), e is defined as the ratio of the 

cylinder energy immediately after impact to the droplet energy before impact. The 

parameter e was varied in the range 0. lcec1.0, and the best agreement with published 

results was obtained with e-0.6. This value is in reasonably good agreement with the 

viscous energy dissipation calculated by Trapaga and Szekely (1991) during the initial 

impact process. 

Low values of e combined with low values of We may result in negative values inside the 

radical in Equation (4), which results in a non-physical, imaginary, number for the initial 

rate of droplet expansion. For e=O.6, the radical turns negative for points with We(1.7, 

which includes 4 points in Table 1 and in Figures 2,3 and 4. For these points the method 



cannot be applied, and a higher value of e (0.9) has been used for comparison with the 

results from the references. 

The results of the analysis for e=O.6 are shown in Figure 8. Figure 8 shows the same 

information as Figure 2, with the only difference that the Madejski calculations are done 

with e-O.6 (e=O.9 for Wec7.7). Figure 8 shows the ratio of the maximum droplet 

diameter calculated from Madejski’s model with e=O.6 and the maximum droplet 

diameter reported in the references. The figure shows a much-improved agreement 

between Madejski’s model and the original references, compared with Figure 2. Almost 

all the results, including the results for the cases that include freezing, fall within 30% of 

the values given in the references, and in most cases the agreement is much better 

throughout the ranges of Reynolds and Weber numbers. This figure indicates that it is 

necessary to incorporate the initial diffusion of energy in Madejski’s model to obtain 

results that are broadly applicable. 

Conclusions 

This paper uses a modified Madejski’s model for calculating droplet spreading and 

solidification upon impingement on a solid surface. Madejski’s model is modified by 

including an improved velocity profile, the Schwarz solution to predict the freezing rate, 

a modified aspect ratio for the cylinder formed upon impingement, and a different initial 

speed of droplet spreading. The results are compared to data published in the recent 

literature over a Reynolds number range of lo2 to lo6 and a Weber number range of 1 to 



10”. Three magnitudes are compared: maximum splat diameter, minimum splat thickness, 

and time for droplet spreading to 95% of the maximum diameter. 

The results show that Madejski’s model overpredicts the maximum droplet diameter and 

underpredicts the minimum splat thickness. No clear trend was found for the predictions 

of spreading time. Examination of the results shows that the overprediction of the 

maximum diameter occurs partly because Madejski’s model neglects energy losses in the 

initial stages of the spreading process. These energy losses result from viscous 

dissipation. Madejski’s model is then modified to take into account these losses by 

changing the initial rate of droplet spreading. The new results show improved agreement 

with the maximum splat diameters (within 30% for almost all cases). These results 

indicate that the modified Madejski’s model of droplet spreading presented in this paper 

can be used to give reasonable predictions of maximum droplet diameter and minimum 

splat thickness. 
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Table 1. Non-dimensional parameters obtained from the literature for the problem of 
droplet spreading, without and with freezing. The test results are the maximum splat 
diameter, the minimum splat thickness, and the time to reach 95% of the maximum splat 
diameter. 

Results without freezing 
Reference 

Trapaga and Szekely, 1991 

Fukai et aL, 1993 

Fukai et aL, 1995 

Zhao et a.L, 1996 

Waldvogel et aL, 1996 

Results with freezing 
Reference 

Trapaga et aL, 1992 

Waldvogel and Poulikakos, 
1997 
Pasandideh-Fard et a.L, 1998 

Test conditions Test results 
Reynolds Weber 

585 6,800 
600 1,290 

6,000 1,290 
16,000 4,500 
60,000 1,290 
63,570 1,304 

600,000 1,290 
100 1.4 
120 80 
500 10 
600 8 

1,200 80 
1,200 100 
1,200 500 
1,200 1,000 
1,200 5,000 
1,944 31.6 
6,000 80 

12,000 80 
3,010 58.4 
3,130 64.1 
3,320 57.5 
3,490 56.8 
4,130 111 
7,390 364 
8,800 359 

485 20 
1,650 235 

156 2.38 
313 4.76 
627 19 

k d*=dlD z==zfD t*=tw/D 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Reynolds Weber k 
23,537 185 0.07 
27,700 223 0.06 

235 2.68 0.23 

12,412 67.5 0.01 
12,412 67.5 0.03 

3.60 
3.65 
5.80 
7.20 
9.30 
9.40 

16.00 
1.30 
2.35 
1.65 
1.65 
2.90 
3.05 
2.63 
3.05 
3.80 
2.37 
3.18 

4.04 
3.61 
3.94 
4.23 
4.48 
5.42 
6.03 
2.05 
3.62 
1.26 
1.36 
1.66 

2.73 
2.83 
1.29 

3.10 

0.01 
0.50 
0.08 
0.15 

0.05 
0.08 

2.40 
2.20 
3.20 
4.50 
5.95 
6.40 

13.00 
0.40 
1.10 
0.60 
0.55 
1.25 
2.00 
1.10 
1.45 
2.07 
1.10 
1.50 

0.40 
0.18 
0.07 

1.90 
1.71 
2.08 
2.01 
2.29 
2.58 
2.86 
0.95 
1.90 
0.30 
0.41 
0.57 

2/D tw/D 
0.13 1.53 
0.12 2.10 
0.48 0.42 

4.19 
2.95 2.13 



maximum splat diameter, d*, symbols: references, lines: Madejski 
104tv “i”‘I”‘l I I Ill1 I I ‘l’“l”‘l I I III 

l 
r “I”“““\’ I IllI “*l’\tl”‘l I l IIr 

r 3.60 + 3.80 7.2cD open symbols: freezing : 
solld symbols: no freezing 

IO’ 
1.8 

F 
3 I.1 
n n 

I .6$ 

6 

II.29 
L 1 

IO0 L 
Id 

26 
I 0 

30 iLLLl 
2 

i 

1111t I 

3 4 

2.35 

u 

1.65 

I,, , I 

IO3 

‘2 
--I 

0 
cl 

&l&dLJA 
2 34 IO4 

Trapaga and Szekeiy. 1991 
Fukai et al., 1993 
Fukai et al.. 1995 
Zhao et al., 1996 
Waldvogel et al.. 1996 
Trapaga et al., 1992 
Waktvogei and Pouliios. 
Pasandii et al. 1998 

LIALLU’I 1 I *III 88 Cl.l~I4Lu 
2 34 105 2s4 IO6 

Reynolds number 

Figure 1. Non-dimensional maximum droplet diameter (d> as a function of Reynolds 
number and Weber number. The figure shows all the points listed in Table 1, with the 
original reference identified by symbols. The numbers located next to the symbols 
indicate the maximum splat diameter obtained from the references. The lines in the figure 
show contours of constant maximum splat diameter, calculated by Madejski’s model 
assuming no fieez.ing conditions (k=O). 
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Figure 2. Ratio of the maximum droplet diameter calculated from Madejski’s model and 
the maximum droplet diameter reported in the references as a function of Reynolds 
number and Weber number. The figure shows all the points listed in Table 1, with the 
original reference identified by symbols. 
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Figure 3. Ratio of the minimum splat thickness calculated from Madejski’s model and the 
minimum splat thickness reported in the references as a function of Reynolds number and 
Weber number. The figure shows all the points listed in Table 1, with the original 
reference identified by symbols. 
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Figure 4. Ratio of the time for reaching 95% of the maximum splat diameter calculated 
by Madejski’s model and the time for reaching 95% of the maximum splat diameter 
reported in the literature as a function of Reynolds number and Weber number. The 
figure shows all the points listed in Table 1, with the original reference identified by 
symbols. 
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Figure 5. Comparison of the results of Madejski’s model and the results of Trapaga and 
Szekely (199 1). The figure shows splat diameter during the spreading process as a 
function of time. The results of Trapaga and Szekely are shown with solid lines and the 
results of Madejski’s method with dotted lines. 
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Figure 6. Comparison of the results of Madejski’s model and the results of Waldvogel et 
al (1996). The figure shows splat diameter during the spreading process as a function of 
time. The results of Waldvogel et aL are shown with solid lines and the results of 
Madejski’s method with dotted lines. 
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Figure 7. Comparison of the results of Madejski’s model and the results of Pasandideh- 
Fard et a.L (1998). The figure shows splat diameter during the spreading process as a 
function of time. The results of Pasandideh-Fard et al, are shown with solid lines and the 
results of Madejski’s method with dotted lines. 
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Figure 8. Ratio of the maximum droplet diameter calculated from Madejski’s model and 
the maximum droplet diameter reported in the references as a function of Reynolds 
number and Weber number. Madejski’s model uses an energy ratio e-0.6, except for 
points with We47.7, for which e=O.9 is used. The figure shows all the points listed in 
Table 1, with the original reference identified by symbols. 


