We present intermediate resolution long-slit spectra and narrow-band Halpha,
[NII] and [OIII] images of PM1-242, PM318 and PM1-333, three IRAS sources
classified as possible planetary nebulae. The spectra show that the three
objects are true planetary nebulae and allow us to study their physical
properties; the images provide a detailed view of their morphology. PM1-242 is
a medium-to-high-excitation (e.g., HeII4686/Hbeta ~0.4; [NII]6584/Halpha ~0.3)
planetary nebula with an elliptical shape containing [NII] enhanced
point-symmetric arcs. An electron temperature [Te([SIII])] of ~10250 K and an
electron density [Ne([SII])] of ~2300 cm-3 are derived for PM1-242. Abundance
calculations suggest a large helium abundance (He/H ~0.29) in PM1-242. PM1-318
is a high-excitation (HeII4686/Hbeta ~1) planetary nebula with a ring-like
inner shell containing two enhanced opposite regions, surrounded by a fainter
round attached shell brighter in the light of [OIII]. PM1-333 is an extended
planetary nebula with a high-excitation (HeII4686/Hbeta up to ~0.9) patchy
circular main body containing two low-excitation knotty arcs. A low Ne([SII])
of ~450 cm-3 and Te([OIII]) of ~15000 K are derived for this nebula. Abundance
calculations suggest that PM1-333 is a type I planetary nebula. The lack of a
sharp shell morphology, low electron density, and high-excitation strongly
suggest that PM1-333 is an evolved planetary nebula. PM1-333 also shows two
low-ionization polar structures whose morphology and emission properties are
reminiscent of collimated outflows. We compare PM1-333 with other evolved
planetary nebulae with collimated outflows and find that outflows among evolved
planetary nebulae exhibit a large variety of properties, in accordance with
these observed in younger planetary nebula.Comment: Accepted in The Astronomical Journal, 23 pages, 6 figure