806 research outputs found
Acaricidal activity of nishinda (Vitex negundo) leaf and garlic (Allium sativum) bulb extract against red spider mite, Oligonychus coïŹeae (Acari: Tetranychidae) in tea plantations of Darjeeling hill, West Bengal, India
The red spider mite, Oligonychus coffeae (Nietner) serves as a serious threat to the Darjeeling tea plantations affecting the quality of the leaves. Various plant extracts are currently being researched as an alternative to the chemical pesticides to control the red spider mites. In the present study, the leaves of Vitex negundo L. and the bulb of Allium sativum L. were analyzed for their acaricidal activity on the larval, nymphal and adult stages of the mite. Both the extracts were found to have potent activity against red spider mites and may prove to be potential acaricides in future
PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF IgG FROM SERUM OF YAK ( BOS GRUNNIENS )
In the present study Immunoglobulin G was purified from serum of Yak by gel filtration chromatography on Sephacryl S-200. SDS- PAGE of purified yak IgG showed four major polypeptides of 62.94 kDa, 53.29 kDa 29.22 and 28.21 kDa. The purified Immunoglobulin has been found to be immuno-reactive by DID test and Western Blot analysis when treated against hyper-immune sera
ï»żNeoadjuvant endocrine therapy for luminal breast tumors: State of the art, challenges and future perspectives
Neoadjuvant endocrine treatment (NET) associates to satisfactory rates of breast conservative surgery and conversions from inoperable to operable hormone receptor-positive (HR+)/HER2-negative breast cancer (BC), with less toxicities than neoadjuvant chemotherapy (NACT) and similar outcomes. Hence, it has been proposed as a logical alternative to NACT in patients with HR+/HER2- BC candidate to a neoadjuvant approach. Nevertheless, potential barriers to the widespread use of NET include the heterogeneous nature of patient response coupled with the long duration needed to achieve a clinical response. However, interest in NET has significantly increased in the last decade, owing to more in-depth investigation of several biomarkers for a more adequate patient selection and on-treatment benefit monitoring, such as PEPI score, Ki67 and genomic assays. This review is intended to describe the state-of-the-art regarding NET, its future perspectives and potential integration with molecular biomarkers for the optimal selection of patients, regimen and duration of (neo)adjuvant treatments
Sperm Motility Regulatory Proteins: A Tool to Enhance Sperm Quality
Sperm forward motility is an essential parameter in mammalian fertilization. Studies from our laboratory have identified and characterized a few unique sperm motility regulatory proteins/glycoproteins from the male reproductive fluids and mammalian blood serum. The purified sperm motility-initiating protein (MIP) from caprine epididymal plasma as well as the forward motility-stimulating factor (FMSF) and motility-stimulating protein (MSP) from buffalo and goat serum, respectively, have high efficacy to initiate or increase motility in nonmotile or less motile sperm. Antibody of sperm motility inhibitory factor (MIF-II) has the high potential to enhance sperm vertical velocity and forward motility by increasing intracellular cyclic adenosine monophosphate (cAMP) level. The appearance and disappearance of D-galactoseâspecific lectin and its receptor along the epididymis has been reported to be involved in motility regulation in spermatozoa. A novel synthetic cryopreservation method and role of lipid to protect membrane damage during cryopreservation have been demonstrated. Motility-promoting proteins may be extremely useful for improving cattle breeding and breeding of endangered species, thereby helping in enhanced production of animal products as well as in the conservation of animals. Isolated proteins and developed cryopreservation technology may also be beneficial in human infertility clinics to increase the chance of fertilization
Global baryon number conservation encoded in net-proton fluctuations measured in PbâPb collisions at âsNN = 2.76 TeV
Experimental results are presented on event-by-event net-proton fluctuation measurements in PbâPb collisions at âSNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.publishedVersio
Ï production in pâPb collisions at âsNN=8.16 TeV
Ï production in pâPb interactions is studied at the centre-of-mass energy per nucleonânucleon collision âsNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and â4.46 < ycms < â2.96, down to zero transverse momentum. In this work, results on the Ï(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the Ï(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the Ï(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the Ï(1S). A first measurement of the Ï(3S) has also been performed. Finally, results are compared with previous ALICE measurements in pâPb collisions at âsNN = 5.02 TeV and with theoretical calculations.publishedVersio
Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions
The first evidence of spin alignment of vector mesons (K^{*0} and Ï) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element Ï_{00} is measured at midrapidity (|y|<0.5) in Pb-Pb collisions at a center-of-mass energy (sqrt[s_{NN}]) of 2.76Â TeV with the ALICE detector. Ï_{00} values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum (p_{T}<2ââGeV/c) for K^{*0} and Ï at a level of 3Ï and 2Ï, respectively. No significant spin alignment is observed for the K_{S}^{0} meson (spin=0) in Pb-Pb collisions and for the vector mesons in pp collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination
- âŠ