238 research outputs found

    Spatiotemporal chaos induces extreme events in an extended microcavity laser

    Full text link
    Extreme events such as rogue wave in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme events appearance in a spatially extended semiconductor microcavity laser with intracavity saturable absorber. This system can display deterministic irregular dynamics only thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor

    An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons

    Full text link
    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics, in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and super-sonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.Comment: 5 pages Main + 5 pages Supplementary, 8 figure

    Transient chirp in high speed photonic crystal quantum dots lasers with controlled spontaneous emission

    Full text link
    We report on a series of experiments on the dynamics of spontaneous emission controlled nanolasers. The laser cavity is a photonic crystal slab cavity, embedding self-assembled quantum dots as gain material. The implementation of cavity electrodynamics effects increases significantly the large signal modulation bandwidth, with measured modulation speeds of the order of 10 GHz while keeping an extinction ratio of 19 dB. A linear transient wavelength shift is reported, corresponding to a chirp of less than 100 pm for a 35-ps laser pulse. We observe that the chirp characteristics are independent of the repetition rate of the laser up to 10 GHz

    Cavity-Enhanced Two-Photon Interference using Remote Quantum Dot Sources

    Full text link
    Quantum dots in cavities have been shown to be very bright sources of indistinguishable single photons. Yet the quantum interference between two bright quantum dot sources, a critical step for photon based quantum computation, has never been investigated. Here we report on such a measurement, taking advantage of a deterministic fabrication of the devices. We show that cavity quantum electrodynamics can efficiently improve the quantum interference between remote quantum dot sources: poorly indistinguishable photons can still interfere with good contrast with high quality photons emitted by a source in the strong Purcell regime. Our measurements and calculations show that cavity quantum electrodynamics is a powerful tool for interconnecting several devices.Comment: 5 pages, 4 figures (Supp. Mat. attached

    Nonlinear Polariton Fluids in a Flatband Reveal Discrete Gap Solitons

    Full text link
    Phase frustration in periodic lattices is responsible for the formation of dispersionless flat bands. The absence of any kinetic energy scale makes flat band physics critically sensitive to perturbations and interactions. We report here on the experimental investigation of the nonlinear dynamics of cavity polaritons in the gapped flat band of a one-dimensional Lieb lattice. We observe the formation of gap solitons with quantized size and very abrupt edges, signature of the frozen propagation of switching fronts. This type of gap solitons belongs to the class of truncated Bloch waves, and had only been observed in closed systems up to now. Here the driven-dissipative character of the system gives rise to a complex multistability of the nonlinear domains generated in the flat band. These results open up interesting perspective regarding more complex 2D lattices and the generation of correlated photon phases.Comment: 6 pages, 4 figures + supplemental material (6 pages, 6 figures
    • …
    corecore