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Photonic-crystal surface-emitting laser near
1.55 lm on gold-coated silicon wafer

G. Vecchi, F. Raineri, I. Sagnes, K.-H. Lee,
S. Guilet, L. Le Gratiet, F. Van Laere, G. Roelkens,
D. Van Thourhout, R. Baets, A. Levenson and R. Raj

An InP=InGaAs-based photonic band-edge laser bonded on silicon

operating near 1.55 mm is presented. A gold reflector positioned below

the slab containing the active layer reduces the optical losses of the

Bloch-mode resonator. As a result, a quality factor exceeding 8000 is

obtained at transparency leading to a laser threshold as low as

3.4 mJ=cm2.

Introduction: Two-dimensional (2D) photonic crystals (PhC) have

grabbed the attention of many because, with their lattice dimensions

of the order of light wavelength, they enable extensive control of the

photonic states inside the matter. Right from the early stages of

development in this domain, laser emission has been demonstrated

by incorporating III–V active materials within the PhC [1–3]. Laser

emission was obtained in two different generic designs: the ‘cavity’

design, in which the light is trapped in an optical cavity created by

introducing a defect in the uniform periodic pattern [1, 2]; and the

‘band-edge’design, which consists in using the increase of the density

of optical modes at the band edges of a perfectly periodic structure

[3]. In this context, the main concern has been and still is the

reduction of the threshold through the management of optical

losses. Concurrently, hybrid structures integrating III–V-based and

silicon-based devices by means of wafer bonding methods were being

developed [4, 5]. Bonding assisted by benzocyclobutene (BCB), a

polymer transparent at 1.55 mm, is particularly promising for the

development of a low-cost silicon-based photonic architecture, incor-

porating active devices. In this Letter, we report on an InP-based PhC-

band edge laser integrated on silicon, emitting at 1.59 mm under

pulsed optical excitation, at room temperature. The two-dimensional

(2D) PhC structure is bonded by BCB on a gold-coated silicon wafer,

whereby the high reflectivity gold layer reduces photon losses, and

consequently the threshold of the PhC laser.

Fig. 1 Schematic of fabricated heterostructure

Device design and fabrication: The schematic structure of the device

is shown in Fig. 1. The in-plane periodic structure is designed to

obtain a slow photonic mode near 1.55 mm at the G point of the

Brillouin zone, in order to enable surface-normal laser emission [6].

Vertically, the structure consists of the InP-based PhC slab, onto the

BCB-bonding layer and the gold mirror. The latter, by controlling the

optical losses, introduces a way to improve the performance of PhC

band-edge emitters. In this way, by controlling the coupling rate

between the resonant lasing mode and radiative modes, resonators

with improved Q-factors are achievable. The coupling rate depends on

the distance separating the InP slab from the mirror, which, in our

case, is defined by the thickness of the BCB layer. The value of

�780 nm chosen here ensures that the light emitted in the vertical

direction interferes destructively with the light reflected by the mirror,
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hence increasing the attainable Q-factor [7, 8]. We preferred to use a

gold mirror instead of an Si–SiO2 Bragg mirror as in [7], because it

has the advantage of acting as a broadband reflector, and can be easily

coated.

The MOCVD-grown InP slab contains four lattice-matched

In0.53Ga0.47As QWs, whose photoluminescence peaked near 1.53 mm.

Following evaporation of the gold layer onto a silicon wafer, the InP

slab was transferred onto it through BCB bonding. The 2D PhC

structure is a graphite lattice of air holes drilled into the 265 nm-thick

InP slab, by inductive plasma etching through a silicon nitride mask,

defined by e-beam lithography and reactive ion etching. Fig. 2 shows a

scanning electron micrograph of the fabricated structure. The graphite

lattice constant is 750 nm, and the air-hole diameter is 270 nm.

Fig. 2 Scanning electron micrograph of PhC surface

Fig. 3 Reflectivity spectrum measured at transparency

Results: To evaluate the performance of the fabricated sample, and in

particular the Q-factor of the resonator, the PhC structure is studied

through ultrafast pump and probe spectroscopy [9]. Fig. 3 shows the

reflectivity spectrum near transparency. In this case, the pump beam at

810 nm, with repetition rate and pulse duration of 82 MHz and 130 fs,

respectively, is set to bleach the total material absorption at the

resonance wavelength. The central wavelength of the resonance is

located at �1590 nm, and its full width at half maximum is �190 pm,

which corresponds to a very high Q¼ l=Dl’ 8400. A broader

resonance is also present in the spectrum near 1593 nm, which is

the signature of another band-edge mode near to the G point. Note that

the Q-factor we measured here is one of the highest reported for

resonators based on slow Bloch modes, attesting the excellent quality

of the fabricated structure.
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Room temperature laser emission in the vertical direction is then

characterised by stopping the probe beam and increasing the pump

intensity. Fig. 4 shows the output laser peak power against pump

fluence. The laser threshold, obtained from a linear fit, corresponds to

an external excitation fluence of about 3.4 mJ=cm2, a value of the same

order of magnitude as the one reported in [7], where the 2D PhC was

positioned on top of a dielectric Bragg mirror. As shown in the upper

inset of Fig. 4, as the pump is further increased, saturation of the light–

light curve is observed. This indicates the onset of a multimode laser

regime owing to the presence of the resonance at 1593 nm shown in

Fig. 3. The spectrum of emission just above threshold is shown in the

lower inset of Fig. 4. The laser peak is at 1589.3 nm, with a linewidth

of � 1.2 nm, which is broader than the resonator linewidth at transpar-

ency. Indeed, in such a pulsed pumping regime, the carrier density is not

constant during the emission, which leads to a frequency chirp and,

consequently, to spectral broadening of the laser linewidth.

Fig. 4 Laser peak power against pump fluence

Straight line fits linear characteristics above threshold
Upper inset: saturation of peak power at high pumping
Lower inset: spectrum of laser emission at 1589.3 nm

Conclusions: We have demonstrated room temperature band-edge

laser emission on silicon at 1.59 mm, under pulsed optical excitation.

The insertion of a gold layer is an important step towards improve-

ment of the field confinement and control of optical losses in the

vertical direction. This results in a Q-factor as high as 8400 and low

laser threshold fluence of 3.4 mJ=cm2.
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