1,085 research outputs found

    Calculus of variations and mathematical theory of optimal control

    Get PDF
    A bibliography is presented of publications and reports resulting from the research project

    Dynamic programming and Pontryagin's maximum principle

    Get PDF
    Dynamic programming and Pontryagin maximum principl

    Calculus of variations and optimal control theory

    Get PDF
    Processes and applications of calculus of variations in optimal control theor

    Symmetric Functions in Noncommuting Variables

    Full text link
    Consider the algebra Q> of formal power series in countably many noncommuting variables over the rationals. The subalgebra Pi(x_1,x_2,...) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In particular, we define analogs of the monomial, power sum, elementary, complete homogeneous, and Schur symmetric functions as will as investigating their properties.Comment: 16 pages, Latex, see related papers at http://www.math.msu.edu/~sagan, to appear in Transactions of the American Mathematical Societ

    Lagrange problems with a variable endpoint as optimal control problems

    Get PDF
    Lagrange problems with variable endpoint as optimal control problem

    On multiplicity-free skew characters and the Schubert Calculus

    Full text link
    In this paper we classify the multiplicity-free skew characters of the symmetric group. Furthermore we show that the Schubert calculus is equivalent to that of skew characters in the following sense: If we decompose the product of two Schubert classes we get the same as if we decompose a skew character and replace the irreducible characters by Schubert classes of the `inverse' partitions (Theorem 4.2).Comment: 14 pages, to appear in Annals. Comb. minor changes from v1 to v2 as suggested by the referees, Example 3.4 inserted so numeration changed in section

    Symmetries and collective excitations in large superconducting circuits

    Full text link
    The intriguing appeal of circuits lies in their modularity and ease of fabrication. Based on a toolbox of simple building blocks, circuits present a powerful framework for achieving new functionality by combining circuit elements into larger networks. It is an open question to what degree modularity also holds for quantum circuits -- circuits made of superconducting material, in which electric voltages and currents are governed by the laws of quantum physics. If realizable, quantum coherence in larger circuit networks has great potential for advances in quantum information processing including topological protection from decoherence. Here, we present theory suitable for quantitative modeling of such large circuits and discuss its application to the fluxonium device. Our approach makes use of approximate symmetries exhibited by the circuit, and enables us to obtain new predictions for the energy spectrum of the fluxonium device which can be tested with current experimental technology

    Poisson-to-Wigner crossover transition in the nearest-neighbor spacing statistics of random points on fractals

    Full text link
    We show that the nearest-neighbor spacing distribution for a model that consists of random points uniformly distributed on a self-similar fractal is the Brody distribution of random matrix theory. In the usual context of Hamiltonian systems, the Brody parameter does not have a definite physical meaning, but in the model considered here, the Brody parameter is actually the fractal dimension. Exploiting this result, we introduce a new model for a crossover transition between Poisson and Wigner statistics: random points on a continuous family of self-similar curves with fractal dimension between 1 and 2. The implications to quantum chaos are discussed, and a connection to conservative classical chaos is introduced.Comment: Low-resolution figure is included here. Full resolution image available (upon request) from the author

    Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems

    Full text link
    In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/21/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number kk fixing the polarization in the subsystem conservation of SzS_{z} and with respect to the irreducible representations of the Sn\mathbf{S_{n}} group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir Korepin (11 pages, 5 figures

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure
    corecore