LAGRANGE PROBLEMS WITH A VARIABLE ENDPOINT AS OPTIMAL CONTROL PROBLEMS

by Hans Sagan

Prepared by

NORTH CAROLINA STATE UNIVERSITY
Raleigh, N. C.
for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. . JULY 1967

NASA CR-837

LAGRANGE PROBLEMS WITH A VARIABLE ENDPOINT

AS OPTIMAL CONTROL PROBLEMS

By Hans Sagan

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

> Prepared under Contract No. NGR-34-002-032 by NORTH CAROLINA STATE UNIVERSITY Raleigh, N. C.

for

LAGRANGE PROBLEMS WITH A VARIABLE ENDPOINT AS OPTIMAL CONTROL PROBLEMS Hans Sagan

SUMMARY

L. S. Pontryagin et al. have shown ([1], pp. 248-256) that the maximum principle leads, as is to be expected, to the multiplier rule and the Weierstrass inequality for the problem of Lagrange.

In this paper, we will demonstrate how the transversality conditions for the Lagrange problem with a variable endpoint may be obtained from Pontryagin's maximum principle and transversality conditions for an optimal control problem with a variable endpoint ([1], pp. 45-50, 62-63).

We consider the Lagrange problem of finding a trajectory $\left(y_{1}(t), \ldots, y_{n}(t)\right) \in C^{1}[a, b]$ (optimal trajectory) so that

$$
\int_{a}^{b} f\left(t, y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) d t+\text { minimum }
$$

under the constraints

$$
\begin{aligned}
& y_{1}^{\prime}=\phi_{1}\left(t, y_{1}, \ldots, y_{n}, y_{\mu+1}^{\prime}, \ldots, y_{\mu}^{\prime}\right) \\
& \vdots \\
& y_{\mu}^{\prime}=\phi_{\mu}\left(t, y_{1}, \ldots, y_{n}, y_{\mu+1}^{\prime}, \ldots, y_{\mu}^{\prime}\right), \mu<\dot{n}
\end{aligned}
$$

which emanates from the given point

$$
y_{i}(a)=y_{i}^{a}, \quad i=1,2, \ldots, n
$$

and terminates for some b on the (smooth) ($n+1-k$)-dimensional manifold T
(1)

$$
x_{1}\left(t, y_{1}, \ldots, y_{n}\right)=0
$$

$$
\begin{aligned}
& \vdots \\
& x_{k}\left(t, y_{1}, \ldots, y_{n}\right)=0, k<n .
\end{aligned}
$$

We will assume that $f, \phi_{i}, \partial f / \partial t, \partial f / \partial y_{j}, \partial \phi_{i} / \partial t, \partial \phi_{i} / \partial y_{j}$ are continuous in an open set of the (t, y_{1}, \ldots, y_{n})-space, that contains the optimal trajectory, and that f, ϕ_{i}, are continuous for all $y_{1}^{\prime}, \ldots, y_{n}^{\prime}$. We will further assume that $\partial x_{i} / \partial t, \partial x_{i} / \partial y_{j}$ are continuous for all t, y_{1}, \ldots, y_{n} and that for every fixed t, grad x_{k} are linearly independent for all $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

The transversality conditions as stated by G. A. Bliss ([2], p. 3ll) and as adopted to our specific problem and notation are as follows:

There have to exist $(k+1)$ constants $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{k}\right) \neq(0,0, \ldots, 0)$ such that

$$
\begin{equation*}
\sum_{i=1}^{k} \mu_{i}\left(\frac{\partial x_{i}}{\partial y_{j}}\right)_{b}=\left(\frac{\partial h}{\partial y_{j}^{1}}\right)_{b}, \quad j=1,2, \ldots, n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k} \mu_{i}\left(\frac{\partial x_{i}}{\partial t}\right)_{b}=-\mu_{0}(f)_{b}-\sum_{i=1}^{n}\left(\frac{\partial h}{\partial y_{i}^{\prime}}\right)_{b} y_{i}^{\prime}(b) \tag{3}
\end{equation*}
$$

where
(4)

$$
h=-\lambda_{0} f+\sum_{i=1}^{\mu} \lambda_{i}\left(y_{i}^{\prime}-\phi_{i}\right)
$$

and where $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{\mu}\right) \neq(0,0, \ldots, 0)$ are the Lagrange multipliers with $\lambda_{0}=\mu_{0}$.

In order to show how these conditions may be obtained from Pontryagin's maximum principle and transversality conditions, we first formulate the Lagrange problem as an optimal control problem, introducing

$$
\begin{gathered}
y_{0}(t)=\int_{a}^{t} f\left(s, y_{1}(s), \ldots, y_{n}(s), y_{1}^{\prime}(s), \ldots, y_{n}^{\prime}(s)\right) d s, \\
u_{1}=y_{\mu+1}^{\prime}, \ldots, u_{m}=y_{n}^{\prime}, m=n-\mu, \\
\phi_{0}\left(t, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{m}\right)=f\left(t, y_{1}, \ldots, y_{n}, \phi_{1}(t, y, u), \ldots, \phi_{\mu}(t, y, u), u_{1}, \ldots, u_{m}\right) .
\end{gathered}
$$

Then the problem will read as follows: To be found is a trajectory $\left(y_{0}(t), y_{1}(t), \ldots, y_{n}(t)\right)$ and a control $\left(u_{1}(t), \ldots, u_{m}(t)\right)$ so that

$$
\begin{align*}
& y_{0}^{\prime}=\phi_{0}\left(t, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{m}\right) \\
& \vdots \\
& y_{\mu}^{\prime}=\phi_{\mu}\left(t, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{m}\right) \tag{5}\\
& y_{\mu+1}^{\prime}=u_{1} \\
& \vdots \\
& y_{n}^{\prime}=u_{m}
\end{align*}
$$

where

$$
\begin{aligned}
& y_{0}(a)=0, \quad y_{i}(a)=y_{i}^{a}, \quad i=1,2, \ldots, n \\
& x_{j}\left(b, y_{l}(b), \ldots, y_{n}(b)\right)=0, \quad j=1,2, \ldots, k
\end{aligned}
$$

for some b, and

$$
y_{0}(b) \rightarrow \text { minimum } .
$$

In the spirit of the problem, as originally posed, the entire (u_{1}, \ldots, u_{m})-space is to be taken as the control region. Then the following relations between the Lagrange multipliers $\lambda_{o}, \lambda_{1}, \ldots, \lambda_{\mu}$ and the solutions $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$ of the conjugate system to (5) follow from the maximum principle ([1], p. 59,251,252)

$$
\begin{equation*}
\psi_{i}(t)=\lambda_{i}(t)-\frac{\partial f}{\partial y_{i}^{\prime}} \psi_{0}, \quad i=0,1, \ldots, \mu \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{\mu+j}(t)=-\psi_{0} \frac{\partial f}{\partial y_{\mu+j}^{\prime}}-\sum_{i=1}^{\mu} \frac{\partial \phi_{i}}{\partial y_{\mu+j}^{\prime}} \lambda_{i}, \quad j=1,2, \ldots, m \tag{7}
\end{equation*}
$$

By (4)

$$
\frac{\partial h}{\partial y_{i}^{\prime}}= \begin{cases}-\lambda_{0} \frac{\partial f}{\partial y_{i}^{\prime}}+\lambda_{i}, & i=1,2, \ldots, \mu \\ -\lambda_{0} \frac{\partial f}{\partial y_{i}^{\prime}}-\sum_{j=1}^{\mu} \lambda_{j} \frac{\partial \phi_{j}}{\partial y_{i}^{\prime}}, & i=\mu+1, \mu+2, \ldots, n .\end{cases}
$$

Hence, in view of (6) and (7)

$$
\begin{equation*}
\frac{\partial h}{\partial y_{i}^{\prime}}=\psi_{i} \tag{9}
\end{equation*}
$$

along the optimal trajectory.
By Pontryagin's transversality condition, ([1], p. 63), it is necessary that at the termination point on T

$$
\psi_{1}(b) p_{1}+\ldots+\psi_{n}(b) p_{n}=0
$$

for any vector (p_{1}, \ldots, p_{n}) that lies in the tangent plane to the ($n-k$) dimensional (smooth) manifold T^{*}

$$
x_{j}\left(b, y_{1}, \ldots, y_{n}\right)=0, \quad j=1,2, \ldots, k
$$

at the termination point. There are exactly k linearly independent vectors that are orthogonal to T^{*} at the termination point, namely

$$
\left(\operatorname{grad} x_{1}\right)_{b}, \ldots,\left(\operatorname{grad} x_{k}\right)_{b}
$$

Hence, by necessity

$$
\begin{equation*}
\psi_{j}(b)=\sum_{i=1}^{k} \mu_{i}\left(\frac{\partial x_{k}}{\partial y_{j}}\right)_{b}, j=1,2, \ldots, n \tag{10}
\end{equation*}
$$

for some constants $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$. Equations (9) and (10) yield the transversality conditions (2).

The remaining condition (3) is obtained as follows: Let $\mathcal{M}(\psi, y, t)$ denote the maximum in u_{1}, \ldots, u_{m} of

$$
\mathcal{H}(\psi, y, t, u)=\psi_{o} f+\psi_{1} \phi_{1}+\ldots+\psi_{\mu} \phi_{\mu}+\psi_{\mu+1} u_{1}+\ldots+\psi_{n} u_{m}
$$

for fixed t, y, ψ. If $\hat{q}=\left(1, q_{1}, \ldots, q_{n}\right)$ is a tangent vector to T at ($b, y_{1}(b), \ldots, y_{n}(b)$), we have to have ([l], p. 62)
(11)

$$
m(\psi(b), y(b), b)=\sum_{i=1}^{n} q_{i} \psi_{i}(b)
$$

Since \hat{q} is a tangent vector to T, we have

$$
\frac{\partial x_{j}}{\partial t}+\sum_{i=1}^{n} q_{i}\left(\frac{\partial x_{j}}{\partial y_{i}}\right)_{b}=0, j=1,2, \ldots, k
$$

We consider first the case where $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right) \neq(0,0, \ldots, 0)$, i.e., $\left(\psi_{1}(b), \psi_{2}(b), \ldots, \psi_{n}(b)\right) \neq(0,0, \ldots, 0)$. Then we obtain after multiplication by μ_{j}, summation over j and observation of (10)

$$
\begin{equation*}
\sum_{j=1}^{k} \mu_{j}\left(\frac{\partial x_{j}}{\partial t}\right)_{b}=-\sum_{i=1}^{n} q_{i} \psi_{i}(b) \tag{12}
\end{equation*}
$$

In view of (7), which is a consequence of $\partial \mathbb{Z} / \partial u_{i}=0, i=1,2, \ldots, m$, we obtain along the optimal trajectory

$$
M(\psi, y, t)=\psi_{0} f+\psi_{1} \phi_{1}+\ldots+\psi_{\mu} \phi_{\mu}+\sum_{i=1}^{m}\left(\psi_{0} \frac{\partial f}{\partial y_{\mu+i}^{\prime}}+\sum_{j=1}^{\mu} \frac{\partial \phi_{j}}{\partial y_{\mu+i}^{\prime}} \lambda_{j}\right) y_{\mu+i}^{\prime}
$$

which because of (8) yields after cumbersome manipulations

$$
\mathcal{M}(\psi, y, t)=\psi_{0} f+\sum_{i=1}^{n} \frac{\partial h}{\partial y_{i}^{\prime}} y_{i}^{r} .
$$

This together with (6), (11) and (12) leads directly to (3) with $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right) \neq(0,0, \ldots, 0)$ and hence $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{k}\right) \neq(0,0, \ldots, 0)$.

The case where $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)=(0,0, \ldots, 0)$ is easily taken care of . If $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)=(0,0, \ldots, 0)$, then $\left(\psi_{1}(b), \ldots, \psi_{n}(b)\right)=(0,0, \ldots, 0)$ but $\psi_{0}<0([1]$, p. 18,19).

Then we have from (2) that $\left(\partial h / \partial y_{i}^{\prime}\right)_{b}=0, j=1, \ldots, n$ and hence, $\mathcal{M}(\psi(b), y(b), b)=\psi_{o}(f)_{b}$. By (ll) we obtain instead of (3)

$$
-\psi_{o}(f)_{b}=0
$$

and since $\psi_{0}<0$ and $\psi_{0}=\lambda_{0}=\mu_{0}$, we have again $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{n}\right) \neq(0,0, \ldots, 0)$.

Bibliography

[1] L. S. Pontryagin, et al. The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1963.
[2] G. A. Bliss. "The problem of Mayer with variable endpoints", Trans. Am. Math. Soc., Vol. 19(1918), pp. 305-314.

North Carolina State University Raleigh, North Carolina August 9, 1966
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

Abstract

TECُHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

