We show that the nearest-neighbor spacing distribution for a model that
consists of random points uniformly distributed on a self-similar fractal is
the Brody distribution of random matrix theory. In the usual context of
Hamiltonian systems, the Brody parameter does not have a definite physical
meaning, but in the model considered here, the Brody parameter is actually the
fractal dimension. Exploiting this result, we introduce a new model for a
crossover transition between Poisson and Wigner statistics: random points on a
continuous family of self-similar curves with fractal dimension between 1 and
2. The implications to quantum chaos are discussed, and a connection to
conservative classical chaos is introduced.Comment: Low-resolution figure is included here. Full resolution image
available (upon request) from the author