research

Poisson-to-Wigner crossover transition in the nearest-neighbor spacing statistics of random points on fractals

Abstract

We show that the nearest-neighbor spacing distribution for a model that consists of random points uniformly distributed on a self-similar fractal is the Brody distribution of random matrix theory. In the usual context of Hamiltonian systems, the Brody parameter does not have a definite physical meaning, but in the model considered here, the Brody parameter is actually the fractal dimension. Exploiting this result, we introduce a new model for a crossover transition between Poisson and Wigner statistics: random points on a continuous family of self-similar curves with fractal dimension between 1 and 2. The implications to quantum chaos are discussed, and a connection to conservative classical chaos is introduced.Comment: Low-resolution figure is included here. Full resolution image available (upon request) from the author

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020