25 research outputs found

    Pharmacokinetics of Cefuroxime are not Significantly Altered by Cardiopulmonary Bypass in Children

    Get PDF
    Poster presented at: SPA/AAP PEDIATRIC ANESTHESIOLOGY 2010 - Winter Meeting; April 2010; San Antonio, TX

    Cefuroxime Pharmacokinetics in Pediatric Cardiovascular Surgery Patients Undergoing Cardiopulmonary Bypass

    Get PDF
    Objectives The objective of this study was to determine the pharmacokinetics of cefuroxime in children undergoing cardiopulmonary bypass (CPB) for cardiovascular surgery. Design A prospective study. Setting A tertiary pediatric teaching hospital. Participants Infants and children undergoing CPB were enrolled in the study. Intervention An initial dose (mean, 24.2 ± 1.6 mg/kg) of cefuroxime was administered before surgical incision, and a second dose (mean, 14.4 ± 7.9 mg/kg) was administered in the CPB prime solution. Serial blood samples were obtained before, during, and after the CPB process. Samples were shipped on dry ice to the analytic laboratory and concentrations determined by a validated high-performance liquid chromatography method. A 2-compartment pharmacokinetic model was fitted to the data using maximum a priori–Bayesian estimation, with weight as a covariate. Monte Carlo simulations of a single-dose (25 mg/kg pre-CPB) approach and a 2-dose (25 mg/kg pre- and 12.5-mg/kg prime solution dose) approach were performed. Measurements and Main Results Fifteen subjects (9 males/6 females) were enrolled in the study, with median (range) age and weight of 11 (3-34) months and 9.5 (4.5-15.4) kg, respectively. The median (range) duration of CPB was 136 (71-243) minutes. Median and range cefuroxime pharmacokinetic parameters were as follows: maximum concentration (Cmax) dose, 1: 328 (150-512) μg/mL; systemic clearance, 0.050 (0.041-0.058) L/h/kg; steady-state volume of distribution, 0.213 (0.081-0.423) L/kg; volume of distribution in the central compartment, 0.081 (0.046-0.162) L/kg; and elimination half-life, 3.76 (1.03-6.81) hours. The median 8-hour post–dose-simulated cefuroxime concentrations were 26.5 and 16.0 mg/L for the 2-dose and single-dose regimens, respectively. Conclusion Manufacturers recommend that pediatric doses of cefuroxime (25-50 mg/kg) can be used in infants and children undergoing CPB to maintain adequate serum concentrations for surgical-site infection prophylaxis. A second intraoperative dose, administered through the CPB circuit, provides no additional prophylactic advantage

    NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62

    Get PDF
    NEMO is a ubiquitin-binding protein which regulates canonical NF-kappa B pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-kappa B-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including alpha-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at alpha-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62. Selective autophagy helps to degrade aggregated proteins accumulating in neurodegenerative diseases. Here, the authors show that NEMO, a ubiquitin binding protein previously linked to innate immune signaling, is recruited to misfolded proteins and promotes their autophagic clearance by forming condensates with the autophagy receptor p62

    Enablers and Barriers to Implementing ICU Follow-Up Clinics and Peer Support Groups Following Critical Illness: The Thrive Collaboratives

    Get PDF
    OBJECTIVES: Data are lacking regarding implementation of novel strategies such as follow-up clinics and peer support groups, to reduce the burden of postintensive care syndrome. We sought to discover enablers that helped hospital-based clinicians establish post-ICU clinics and peer support programs, and identify barriers that challenged them. DESIGN: Qualitative inquiry. The Consolidated Framework for Implementation Research was used to organize and analyze data. SETTING: Two learning collaboratives (ICU follow-up clinics and peer support groups), representing 21 sites, across three continents. SUBJECTS: Clinicians from 21 sites. MEASUREMENT AND MAIN RESULTS: Ten enablers and nine barriers to implementation of "ICU follow-up clinics" were described. A key enabler to generate support for clinics was providing insight into the human experience of survivorship, to obtain interest from hospital administrators. Significant barriers included patient and family lack of access to clinics and clinic funding. Nine enablers and five barriers to the implementation of "peer support groups" were identified. Key enablers included developing infrastructure to support successful operationalization of this complex intervention, flexibility about when peer support should be offered, belonging to the international learning collaborative. Significant barriers related to limited attendance by patients and families due to challenges in creating awareness, and uncertainty about who might be appropriate to attend and target in advertising. CONCLUSIONS: Several enablers and barriers to implementing ICU follow-up clinics and peer support groups should be taken into account and leveraged to improve ICU recovery. Among the most important enablers are motivated clinician leaders who persist to find a path forward despite obstacles

    Key mechanisms by which post-ICU activities can improve in-ICU care: results of the international THRIVE collaboratives

    Get PDF
    Objective: To identify the key mechanisms that clinicians perceive improve care in the intensive care unit (ICU), as a result of their involvement in post-ICU programs. Methods: Qualitative inquiry via focus groups and interviews with members of the Society of Critical Care Medicine’s THRIVE collaborative sites (follow-up clinics and peer support). Framework analysis was used to synthesize and interpret the data. Results: Five key mechanisms were identified as drivers of improvement back into the ICU: (1) identifying otherwise unseen targets for ICU quality improvement or education programs—new ideas for quality improvement were generated and greater attention paid to detail in clinical care. (2) Creating a new role for survivors in the ICU—former patients and family members adopted an advocacy or peer volunteer role. (3) Inviting critical care providers to the post-ICU program to educate, sensitize, and motivate them—clinician peers and trainees were invited to attend as a helpful learning strategy to gain insights into post-ICU care requirements. (4) Changing clinician’s own understanding of patient experience—there appeared to be a direct individual benefit from working in post-ICU programs. (5) Improving morale and meaningfulness of ICU work—this was achieved by closing the feedback loop to ICU clinicians regarding patient and family outcomes. Conclusions: The follow-up of patients and families in post-ICU care settings is perceived to improve care within the ICU via five key mechanisms. Further research is required in this novel area

    Targeting Huntingtin expression in patients with Huntington's disease

    Get PDF
    Background Huntington’s disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. Methods We conducted a randomized, double-blind, multiple-ascending-dose, phase 1–2a trial involving adults with early Huntington’s disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. Results Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and −20%, −25%, −28%, −42%, and −38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). Conclusions Intrathecal administration of HTTRx to patients with early Huntington’s disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann–La Roche; ClinicalTrials.gov number, NCT02519036.

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Characteristics of Post-ICU and Post-COVID Recovery Clinics in 29 U.S. Health Systems.

    No full text
    The multifaceted long-term impairments resulting from critical illness and COVID-19 require interdisciplinary management approaches in the recovery phase of illness. Operational insights into the structure and process of recovery clinics (RCs) from heterogeneous health systems are needed. This study describes the structure and process characteristics of existing and newly implemented ICU-RCs and COVID-RCs in a subset of large health systems in the United States.DesignCross-sectional survey.SettingThirty-nine RCs, representing a combined 156 hospitals within 29 health systems participated.PatientsNone.InterventionsNone.Measurement and main resultsRC demographics, referral criteria, and operating characteristics were collected, including measures used to assess physical, psychologic, and cognitive recoveries. Thirty-nine RC surveys were completed (94% response rate). ICU-RC teams included physicians, pharmacists, social workers, physical therapists, and advanced practice providers. Funding sources for ICU-RCs included clinical billing (n = 20, 77%), volunteer staff support (n = 15, 58%), institutional staff/space support (n = 13, 46%), and grant or foundation funding (n = 3, 12%). Forty-six percent of RCs report patient visit durations of 1 hour or longer. ICU-RC teams reported use of validated scales to assess psychologic recovery (93%), physical recovery (89%), and cognitive recovery (86%) more often in standard visits compared with COVID-RC teams (psychologic, 54%; physical, 69%; and cognitive, 46%).ConclusionsOperating structures of RCs vary, though almost all describe modest capacity and reliance on volunteerism and discretionary institutional support. ICU- and COVID-RCs in the United States employ varied funding sources and endorse different assessment measures during visits to guide care coordination. Common features include integration of ICU clinicians, interdisciplinary approach, and focus on severe critical illness. The heterogeneity in RC structures and processes contributes to future research on the optimal structure and process to achieve the best postintensive care syndrome and postacute sequelae of COVID outcomes
    corecore